DEEP LEARNING FOR 3D BUILDING RECONSTRUCTION: A REVIEW

Author:

Buyukdemircioglu M.,Kocaman S.,Kada M.

Abstract

Abstract. 3D building reconstruction using Earth Observation (EO) data (aerial and satellite imagery, point clouds, etc.) is an important and active research topic in different fields, such as photogrammetry, remote sensing, computer vision and Geographic Information Systems (GIS). Nowadays 3D city models have become an essential part of 3D GIS environments and they can be used in many applications and analyses in urban areas. The conventional 3D building reconstruction methods depend heavily on the data quality and source; and manual efforts are still needed for generating the object models. Several tasks in photogrammetry and remote sensing have been revolutionized by using deep learning (DL) methods, such as image segmentation, classification, and 3D reconstruction. In this study, we provide a review on the state-of-the-art machine learning and in particular the DL methods for 3D building reconstruction for the purpose of city modelling using EO data. This is the first review with a focus on object model generation based on the DL methods and EO data. A brief overview of the recent building reconstruction studies with DL is also given. We have investigated the different DL architectures, such as convolutional neural networks (CNNs), generative adversarial networks (GANs), and the combinations of conventional approaches with DL in this paper and reported their advantages and disadvantages. An outlook on the future developments of 3D building modelling based on DL is also presented.

Publisher

Copernicus GmbH

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-View Remote Sensing Image Segmentation with Sam Priors;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. Path Planning for Unmanned Aerial Vehicles in Complex Environments;Drones;2024-06-26

3. APC2Mesh: Bridging the gap from occluded building façades to full 3D models;ISPRS Journal of Photogrammetry and Remote Sensing;2024-05

4. Building Detection from SkySat Images with Transfer Learning: a Case Study over Ankara;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2024-03-18

5. Deep Learning for 3D Reconstruction, Augmentation, and Registration: A Review Paper;Entropy;2024-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3