Global distribution of CO<sub>2</sub> in the upper troposphere and stratosphere
-
Published:2017-03-21
Issue:6
Volume:17
Page:3861-3878
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Diallo MohamadouORCID, Legras BernardORCID, Ray Eric, Engel AndreasORCID, Añel Juan A.ORCID
Abstract
Abstract. In this study, we construct a new monthly zonal mean carbon dioxide (CO2) distribution from the upper troposphere to the stratosphere over the 2000–2010 time period. This reconstructed CO2 product is based on a Lagrangian backward trajectory model driven by ERA-Interim reanalysis meteorology and tropospheric CO2 measurements. Comparisons of our CO2 product to extratropical in situ measurements from aircraft transects and balloon profiles show remarkably good agreement. The main features of the CO2 distribution include (1) relatively large mixing ratios in the tropical stratosphere; (2) seasonal variability in the extratropics, with relatively high mixing ratios in the summer and autumn hemisphere in the 15–20 km altitude layer; and (3) decreasing mixing ratios with increasing altitude from the upper troposphere to the middle stratosphere ( ∼ 35 km). These features are consistent with expected variability due to the transport of long-lived trace gases by the stratospheric Brewer–Dobson circulation. The method used here to construct this CO2 product is unique from other modelling efforts and should be useful for model and satellite validation in the upper troposphere and stratosphere as a prior for inversion modelling and to analyse features of stratosphere–troposphere exchange as well as the stratospheric circulation and its variability.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference85 articles.
1. Abalos, M., Legras, B., Ploeger, F., and Randel, W. J.: Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979–2012, J. Geophys. Res. Atmos., 120, 7534–7554, https://doi.org/10.1002/2015JD023182, 2015. 2. Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Hintsa, E. J., Weinstock, E. M., and Bui, T. P.: Mean age of stratospheric air derived from in situ observations of CO2, CH4 and N2O, J. Geophys. Res., 106, 32 295–32 314, https://doi.org/10.1029/2001JD000465, 1999. 3. Andrews, A. E., Boering, K. A., Wofsy, S. C., Daube, B. C., Jones, D. B., Alex, S., Loewenstein, M., Podolske, J. R., and Strahan, S. E.: Empirical age spectra for the lower tropical stratosphere from in situ observations of CO2: Quantitative evidence for a sub-tropical barrier to horizontal transport, J. Geophys. Res., 106, 32295–32314, https://doi.org/10.1029/2001JD000465, 2001a. 4. Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Loewenstein, M., Jost, H., Podolske, J. R., Webster, C. R., Herman, R. L., C., S. D., Flesch, G. J., Moyer, E. J., Elkins, J. W., Dutton, G. S., Hurst, D. F., Moore, F. L., Ray, E. A., Romashkin, P. A., and Strahan, S. E.: Mean age of stratospheric air derived from in situ observations of CO2:Implications for stratospheric transport, J. Geophys. Res., 104, 26581–26596, https://doi.org/10.1029/1999JD900150, 2001b. 5. Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, International Geophysics Series, Academic Press, San Diego, USA, 40 , 1987.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|