Assessment of WRF-CO2 simulated vertical profiles of CO2 over Delhi region using aircraft and global model data

Author:

Ballav Srabanti,Patra Prabir K.,Naja Manish,Mukherjee Sandipan,Machida Toshinobu

Abstract

AbstractHigh-resolution regional model simulation of CO2 may be more beneficial to reduce the uncertainty in estimation of CO2 source and sink via inverse modeling. However, the study of atmospheric CO2 transport with regional models is rare over India. Here, weather research and forecasting chemistry model adjusted for CO2 (WRF-CO2) is used for simulating vertical profile of CO2 and its assessment is performed over Delhi, India (27.4–28.6° N and 77–96° E) by comparing aircraft observations (CONTRAIL) and a global model (ACTM) data. During August and September, the positive vertical gradient (~ 13.4 ppm) within ~ 2.5 km height is observed due to strong CO2 uptake by newly growing vegetation. A similar pattern (~ 4 ppm) is noticed in February due to photosynthesis by newly growing winter crops. The WRF-CO2 does not show such steep increasing slope (capture up to 5%) during August and September but same for February is estimated ~ 1.7 ppm. Generally, CO2 is quite well mixed between ~ 2.5 and ~ 8 km height above ground which is well simulated by the WRF-CO2 model. During stubble burning period of 2010, the highest gradient within 2.5 km height above ground was recorded in October (− 9.3 ppm), followed by November (− 7.6 ppm). The WRF-CO2 and ACTM models partially capture these gradients (October − 3.3 and − 2.7 ppm and November − 3.8 and − 4.3 ppm respectively). A study of the seasonal variability of CO2 indicates seasonal amplitudes decrease with increasing height (amplitude is ~ 21 ppm at the near ground and ~ 6 ppm at 6–8 km altitude bin). Correlation coefficients (CC) between the WRF-CO2 model and observation are noted to be greater than 0.59 for all the altitude bins. In contrast to simulated fossil CO2, the biospheric CO2 is in phase with observed seasonality, having about 80% at the lowest level and gradually declines with height due to mixing processes, reaching around 60% at the highest level. The model simulation reveals that meteorology plays a significant role of the horizontal and vertical gradient of CO2 over the region.

Funder

DST-SERB, India

Ministry of the Environment, Japan

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3