Interpreting the <sup>13</sup>C  ∕ <sup>12</sup>C ratio of carbon dioxide in an urban airshed in the Yangtze River Delta, China

Author:

Xu Jiaping,Lee Xuhui,Xiao Wei,Cao Chang,Liu Shoudong,Wen Xuefa,Xu Jingzheng,Zhang Zhen,Zhao Jiayu

Abstract

Abstract. Observations of atmospheric CO2 mole fraction and the 13C ∕ 12C ratio (expressed as δ13C) in urban airsheds provide constraints on the roles of anthropogenic and natural sources and sinks in local and regional carbon cycles. In this study, we report observations of these quantities in Nanjing at hourly intervals from March 2013 to August 2015, using a laser-based optical instrument. Nanjing is the second largest city located in the highly industrialized Yangtze River Delta (YRD), eastern China. The mean CO2 mole fraction and δ13C were (439.7 ± 7.5) µmol mol−1 and (−8.48 ± 0.56) ‰ over this observational period. The peak monthly mean δ13C (−7.44 ‰, July 2013) was 0.74 ‰ higher than that observed at Mount Waliguan, a WMO (World Meteorological Organization) baseline site on the Tibetan Plateau and upwind of the YRD region. The highly 13C-enriched signal was partly attributed to the influence of cement production in the region. By applying the Miller–Tans method to nighttime and daytime observations to represent signals from the city of Nanjing and the YRD, respectively, we showed that the 13C ∕ 12C ratio of CO2 sources in the Nanjing municipality was (0.21 ± 0.53) ‰ lower than that in the YRD. Flux partitioning calculations revealed that natural ecosystems in the YRD were a negligibly small source of atmospheric CO2.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference83 articles.

1. Affek, H. P. and Eiler, J. M.:Abundance of mass 47-CO2 in urban air, car exhaust, and human breath, Geochim. Cosmochim. Ac., 70, 1–12, 2006.

2. Akbari, H., Menon, S., and Rosenfeld, A.: Global cooling: increasing world-wide urban albedos to offset CO2, Climatic Change, 94, 275–286, 2009.

3. An, H.: Ammonia synthesis: current status and future outlook, Coal Chem. West. China, 2, 4–13, 2012.

4. Andres, R. J., Marland, G., Boden, T., and Bischof, S.: Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751–1991; and an estimate of their isotopic composition and latitudinal distribution, Oak Ridge National Lab., TN, USA, 1994.

5. Bai, Y.: A Comparative Study on Turbulent Fluxes Exchange over Nanjing Urban and Suburban in Summer, MS Thesis, Nanjing University of Information Science &amp; Technology, Nanjing, 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3