Improvements of Simulating Urban Atmospheric CO2 Concentration by Coupling with Emission Height and Dynamic Boundary Layer Variations in WRF-STILT Model

Author:

Peng Yiyi1,Hu Cheng12,Ai Xinyue1,Li Yuanyuan1,Gao Leyun1,Liu Huili1,Zhang Junqing1,Xiao Wei2

Affiliation:

1. College of Biology and the Environment, Joint Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 211544, China

Abstract

Although cities only account for 3% of the global land area, they have disproportionately contributed 70% of total anthropogenic CO2 emissions; the main issue in estimating urban anthropogenic CO2 emissions is their large uncertainty. Tower-based atmospheric CO2 observations and simulations in urban areas have been frequently used as an independent approach to constrain and evaluate greenhouse gas emissions from city to regional scales, where only daytime CO2 observations and simulations are used considering the consensus that the large bias in simulating nighttime planetary boundary layer heights (PBLH) and atmospheric CO2 concentration will cause overestimation/underestimation in CO2 emission inversions. The above strategy of only using daytime observations makes the numbers of available concentration observations largely decrease even with the fact that tower-based atmospheric CO2 observations are sparsely distributed and conducted. Here, to solve the issue of large bias in nighttime CO2 simulations, we conducted four months of atmospheric CO2 observations from January to April in 2019, and raised an approach by coupling emission heights with dynamic PBLH variations in a WRF-STILT model. We found (1) the overestimation of simulated nighttime CO2 concentration decreased by 5–10 ppm, especially between 0:00 and 7:00. (2) The statistics for nighttime simulations were largely improved by using a revised model and posteriori emissions. The regression slopes of daily averages were 0.93 and 0.81 for the default model using a priori emissions and the revised model using the same a priori emissions, and the slope largely improved to 0.97 for the revised model using posteriori emissions. Moreover, the correlation coefficient also increased from 0.29 and 0.37 to 0.53; these results indicate our revised model obviously calibrated the bias in both nighttime and daily CO2 concentration simulations. In general, it is strongly recommended to use the revised WRF-STILT model in future inversion studies, which can effectively reduce the overestimation of nighttime spikes and make full use of nighttime observations.

Funder

National Science founding of China

Natural Science Foundation of Jiangsu Province

National Key R&D Program of China

Nanjing Forestry University

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3