Representation of the Denmark Strait overflow in a <i>z</i>-coordinate eddying configuration of the NEMO (v3.6) ocean model: resolution and parameter impacts

Author:

Colombo Pedro,Barnier BernardORCID,Penduff ThierryORCID,Chanut Jérôme,Deshayes Julie,Molines Jean-MarcORCID,Le Sommer Julien,Verezemskaya Polina,Gulev Sergey,Treguier Anne-Marie

Abstract

Abstract. We investigate in this paper the sensitivity of the representation of the Denmark Strait overflow produced by a regional z-coordinate configuration of NEMO (version 3.6) to the horizontal and vertical grid resolutions and to various numerical and physical parameters. Three different horizontal resolutions, 1∕12, 1∕36, and 1/60∘, are respectively used with 46, 75, 150, and 300 vertical levels. In the given numerical set-up, the increase in the vertical resolution did not bring improvement at eddy-permitting resolution (1/12∘). We find a greater dilution of the overflow as the number of vertical level increases, and the worst solution is the one with 300 vertical levels. It is found that when the local slope of the grid is weaker than the slope of the topography the result is a more diluted vein. Such a grid enhances the dilution of the plume in the ambient fluid and produces its thickening. Although the greater number of levels allows for a better resolution of the ageostrophic Ekman flow in the bottom layer, the final result also depends on how the local grid slope matches the topographic slope. We also find that for a fixed number of levels, the representation of the overflow is improved when horizontal resolution is increased to 1∕36 and 1/60∘, with the most drastic improvements being obtained with 150 levels. With such a number of vertical levels, the enhanced vertical mixing associated with the step-like representation of the topography remains limited to a thin bottom layer representing a minor portion of the overflow. Two major additional players contribute to the sinking of the overflow: the breaking of the overflow into boluses of dense water which contribute to spreading the overflow waters along the Greenland shelf and within the Irminger Basin, and the resolved vertical shear that results from the resolution of the bottom Ekman boundary layer dynamics. This improves the accuracy of the calculation of the entrainment by the turbulent kinetic energy mixing scheme (as it depends on the local shear) and improves the properties of the overflow waters such that they more favourably compare with observations. At 300 vertical levels the dilution is again increased for all horizontal resolutions. The impact on the overflow representation of many other numerical parameters was tested (momentum advection scheme, lateral friction, bottom boundary layer parameterization, closure parameterization, etc.), but none had a significant impact on the overflow representation.

Publisher

Copernicus GmbH

Reference95 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Method to Share Marine Big Data between Networks;2024 4th International Conference on Electronics, Circuits and Information Engineering (ECIE);2024-05-24

2. Localized General Vertical Coordinates for Quasi‐Eulerian Ocean Models: The Nordic Overflows Test‐Case;Journal of Advances in Modeling Earth Systems;2024-02-29

3. Challenges simulating the AMOC in climate models;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-10-23

4. Decadal changes in Atlantic overturning due to the excessive 1990s Labrador Sea convection;Nature Communications;2023-08-02

5. Improving Antarctic Bottom Water precursors in NEMO for climate applications;Geoscientific Model Development;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3