Attribution of precipitation to cyclones and fronts over Europe in a kilometer-scale regional climate simulation

Author:

Rüdisühli Stefan,Sprenger Michael,Leutwyler DavidORCID,Schär ChristophORCID,Wernli HeiniORCID

Abstract

Abstract. This study presents a detailed analysis of the climatological distribution of precipitation in relation to cyclones and fronts over Europe for the 9-year period 2000–2008. The analysis uses hourly output of a COSMO (Consortium for Small-scale Modeling) model simulation with 2.2 km grid spacing and resolved deep convection. Cyclones and fronts are identified as two-dimensional features in 850 hPa geopotential, equivalent potential temperature, and wind fields and subsequently tracked over time based on feature overlap and size. Thermal heat lows and local thermal fronts are removed based on track properties. This dataset then serves to define seven mutually exclusive precipitation components: cyclonic (near cyclone center), cold-frontal, warm-frontal, collocated (e.g., occlusion area), far-frontal, high-pressure (e.g., summer convection), and residual. The approach is illustrated with two case studies with contrasting precipitation characteristics. The climatological analysis for the 9-year period shows that frontal precipitation peaks in winter and fall over the eastern North Atlantic and the Alps (> 70 % in winter), where cold frontal precipitation is also crucial year-round; cyclonic precipitation is largest over the North Atlantic (especially in summer with > 40 %) and in the northern Mediterranean (widespread > 40 %); high-pressure precipitation occurs almost exclusively over land and primarily in summer (widespread 30 %–60 %, locally >80 %); and the residual contributions uniformly amount to about 20 % in all seasons. Considering heavy precipitation events (defined based on the local 99.9th all-hour percentile) reveals that high-pressure precipitation dominates in summer over the continent (50 %–70 %, locally >80 %); cold fronts produce much more heavy precipitation than warm fronts; and cyclones contribute substantially (50 %–70 %), especially in the Mediterranean in fall through spring and in northern Europe in summer.

Publisher

Copernicus GmbH

Reference82 articles.

1. Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–Present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003. a

2. Ban, N., Schmidli, J., and Schär, C.: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations, J. Geophys. Res.-Atmos., 119, 7889–7907, https://doi.org/10.1002/2014JD021478, 2014. a

3. Ban, N., Schmidli, J., and Schär, C.: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster?, Geophys. Res. Lett., 42, 1165–1172, https://doi.org/10.1002/2014GL062588, 2015. a

4. Bergeron, T.: On the low-level redistribution of atmospheric water caused by orography, Suppl. Proc. Int. Conf. Cloud Phys., Tokyo, 96–100, 1965. a

5. Bjerknes, J.: On the structure of moving cyclones, Mon. Weather Rev., 47, 95–99, https://doi.org/10.1175/1520-0493(1919)47<95:OTSOMC>2.0.CO;2, 1919. a

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3