Carbon budget of tropical forests in Southeast Asia and the effects of deforestation: an approach using a process-based model and field measurements

Author:

Adachi M.,Ito A.,Ishida A.,Kadir W. R.,Ladpala P.,Yamagata Y.

Abstract

Abstract. More reliable estimates of the carbon (C) stock within forest ecosystems and C emission induced by deforestation are urgently needed to mitigate the effects of emissions on climate change. A process-based terrestrial biogeochemical model (VISIT) was applied to tropical primary forests of two types (a seasonal dry forest in Thailand and a rainforest in Malaysia) and one agro-forest (an oil palm plantation in Malaysia) to estimate the C budget of tropical ecosystems in Southeast Asia, including the impacts of land-use conversion. The observed aboveground biomass in the seasonal dry tropical forest in Thailand (226.3 t C ha−1) and the rainforest in Malaysia (201.5 t C ha−1) indicate that tropical forests of Southeast Asia are among the most C-abundant ecosystems in the world. The model simulation results in rainforests were consistent with field data, except for the NEP, however, the VISIT model tended to underestimate C budget and stock in the seasonal dry tropical forest. The gross primary production (GPP) based on field observations ranged from 32.0 to 39.6 t C ha−1 yr−1 in the two primary forests, whereas the model slightly underestimated GPP (26.5–34.5 t C ha−1 yr−1). The VISIT model appropriately captured the impacts of disturbances such as deforestation and land-use conversions on the C budget. Results of sensitivity analysis showed that the proportion of remaining residual debris was a key parameter determining the soil C budget after the deforestation event. According to the model simulation, the total C stock (total biomass and soil C) of the oil palm plantation was about 35% of the rainforest's C stock at 30 yr following initiation of the plantation. However, there were few field data of C budget and stock, especially in oil palm plantation. The C budget of each ecosystem must be evaluated over the long term using both the model simulations and observations to understand the effects of climate and land-use conversion on C budgets in tropical forest ecosystems.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference56 articles.

1. Adachi, M. and Koizumi, H.: Soil organic carbon dynamics of different land use in Southeast Asia, in: Forest canopies: forest production, ecosystem health and climate conditions, edited by: Creighton, J. D. and Roney, P. J., Nova Science Publishers Inc., New York, NY, USA, 85–101, 2009.

2. Adachi, M., Bekku, S. Y., Konuma, A., Kadir, W. R., Okuda, T., and Koizumi, H.: Required sample size for estimating soil respiration rates in large areas of two tropical forests and of two types of plantation in Malaysia, Forest Ecol. Manag., 210, 455–459, 2005.

3. Adachi, M., Bekku, Y. S., Kadir, W. R., Okuda, T., and Koizumi, H.: Differences in soil respiration between different tropical ecosystems, Appl. Soil. Ecol., 34, 258–265, 2006.

4. Bekku, S. Y., Nakatsubo, T., Kume, A., Adachi, M., and Koizumi, H.: Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils, Appl. Soil. Ecol., 22, 205–210, 2003.

5. Chapin III, F. S., Woodwell, G. M., Randerson, J. T., Rastetter, E. B., Lovett, G. M., Baldocchi, D. D., Clark, D. A., Harmon, M. E., Schimel, D. S., Valentini, R., Wirth, C., Aber, J. D., Cole, J. J., Goulden, M. L., Harden, J. W., Heimann, M., Howarth, R. W., Matson, P. A., McGuire, A. D., Melillo, J. M., Mooney, H. A., Neff, J. C., Houghton, R. A., Pace, M. L., Ryan, M. G., Running, S. W., Sala, O. E., Schelesinger, W. H., and Schulze, E. D.: Reconciling carbon-cycle concepts, terminology, and methods, Ecosystems, 9, 1041–1050, 2006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3