A semi-implicit, second order accurate numerical model for multiphase underexpanded volcanic jets

Author:

Carcano S.,Bonaventura L.,Esposti Ongaro T.ORCID,Neri A.ORCID

Abstract

Abstract. An improved version of the PDAC (Pyroclastic Dispersal Analysis Code, Esposti Ongaro et al., 2007) numerical model for the simulation of multiphase volcanic flows is presented and validated for the simulation of multiphase volcanic jets in supersonic regimes. The present version of PDAC includes second-order time and space discretizations and fully multidimensional advection discretizations, in order to reduce numerical diffusion and enhance the accuracy of the original model. The model is tested on the problem of jet decompression, in both two and three dimensions. For homogeneous jets, numerical results are consistent with experimental results at the laboratory scale (Lewis and Carlson, 1964). For non-equilibrium gas-particle jets, we consider monodisperse and bidisperse mixtures and we quantify non-equilibrium effects in terms of the ratio between the particle relaxation time and a characteristic jet time scale. For coarse particles and low particle load, numerical simulations well reproduce laboratory experiments and numerical simulations carried out with an Eulerian-Lagrangian model (Sommerfeld, 1993). At the volcanic scale, we consider steady-state conditions associated to the development of Vulcanian and sub-Plinian eruptions. For the finest particles produced in these regimes, we demonstrate that the solid phase is in mechanical and thermal equilibrium with the gas phase and that the jet decompression structure is well described by a pseudogas model (Ogden et al., 2008). Coarse particles, on the contrary, display significant non-equilibrium effects, associated to their larger relaxation time. Deviations from the equilibrium regime occur especially during the rapid acceleration phases and are able to appreciably modify the average jet dynamics, with maximum velocity and temperature differences of the order of 150 m s−1 and 80 K across shock waves.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3