An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling

Author:

Canty T.,Mascioli N. R.,Smarte M. D.,Salawitch R. J.

Abstract

Abstract. Observed reductions in Earth's surface temperature following explosive volcanic eruptions have been used as a proxy for geoengineering of climate by the artificial enhancement of stratospheric sulfate. Earth cools following major eruptions due to an increase in the reflection of sunlight caused by a dramatic enhancement of the stratospheric sulfate aerosol burden. Significant global cooling has been observed following the four major eruptions since 1900: Santa María, Mount Agung, El Chichón and Mt. Pinatubo, leading IPCC (2007) to state "major volcanic eruptions can, thus, cause a drop in global mean surface temperature of about half a degree Celsius that can last for months and even years". We use a multiple linear regression model applied to the global surface temperature anomaly to suggest that exchange of heat between the atmosphere and ocean, driven by variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC), has been a factor in the decline of global temperature following these eruptions. The veracity of this suggestion depends on whether sea surface temperature (SST) in the North Atlantic, sometimes called the Atlantic Multidecadal Oscillation, but here referred to as Atlantic Multidecadal Variability (AMV), truly represents a proxy for the strength of the AMOC. Also, precise quantification of global cooling due to volcanoes depends on how the AMV index is detrended. If the AMV index is detrended using anthropogenic radiative forcing of climate, we find that surface cooling attributed to Mt. Pinatubo, using the Hadley Centre/University of East Anglia surface temperature record, maximises at 0.14 °C globally and 0.32 °C over land. These values are about a factor of 2 less than found when the AMV index is neglected in the model and quite a bit lower than the canonical 0.5 °C cooling usually attributed to Pinatubo. This result is driven by the high amplitude, low frequency component of the AMV index, demonstrating that reduced impact of volcanic cooling upon consideration of the AMV index is driven by variations in North Atlantic SST that occur over time periods much longer than those commonly associated with major volcanic eruptions. The satellite record of atmospheric temperature from 1978 to present and other century-long surface temperature records are also consistent with the suggestion that volcanic cooling may have been over estimated by about a factor of 2 due to prior neglect of ocean circulation. Our study suggests a recalibration may be needed for the proper use of Mt. Pinatubo as a proxy for geoengineering of climate. Finally, we highlight possible shortcomings in simulations of volcanic cooling by general circulation models, which are also being used to assess the impact of geoengineering of climate via stratospheric sulfate injection.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference132 articles.

1. Ammann, C. M., Meehl, G. A., Washington, W. M., and Zender, C. S.: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate, Geophys. Res. Lett., 30, 1657, https://doi.org/10.1029/2003GL016875, 2003.

2. Ammann, C. M., Washington, W. M., Meehl, G. A., Buja, L., and Teng, H.: Climate engineering through artificial enhancement of natural forcings: magnitudes and implied consequences, J. Geophys. Res., 115, D22109, https://doi.org/10.1029/2009JD012878, 2010.

3. Andronova, N. G. and Schlesinger, M. E.: Causes of global temperature changes during the 19th and 20th centuries, Geophys. Res. Lett., 27, 2137–2140, https://doi.org/10.1029/2000GL006109, 2000.

4. Boessenkool, K. P., Hall, I. R., Elderfield, H., and Yashayaev, I.: North Atlantic climate and deep-ocean flow speed changes during the last 230 years, Geophys. Res. Lett., 34, L13614, https://doi.org/10.1029/2007GL030285, 2007.

5. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res., in press, https://doi.org/10.1002/jgrd.50171, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3