An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling
-
Published:2013-04-18
Issue:8
Volume:13
Page:3997-4031
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Canty T.,Mascioli N. R.,Smarte M. D.,Salawitch R. J.
Abstract
Abstract. Observed reductions in Earth's surface temperature following explosive volcanic eruptions have been used as a proxy for geoengineering of climate by the artificial enhancement of stratospheric sulfate. Earth cools following major eruptions due to an increase in the reflection of sunlight caused by a dramatic enhancement of the stratospheric sulfate aerosol burden. Significant global cooling has been observed following the four major eruptions since 1900: Santa María, Mount Agung, El Chichón and Mt. Pinatubo, leading IPCC (2007) to state "major volcanic eruptions can, thus, cause a drop in global mean surface temperature of about half a degree Celsius that can last for months and even years". We use a multiple linear regression model applied to the global surface temperature anomaly to suggest that exchange of heat between the atmosphere and ocean, driven by variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC), has been a factor in the decline of global temperature following these eruptions. The veracity of this suggestion depends on whether sea surface temperature (SST) in the North Atlantic, sometimes called the Atlantic Multidecadal Oscillation, but here referred to as Atlantic Multidecadal Variability (AMV), truly represents a proxy for the strength of the AMOC. Also, precise quantification of global cooling due to volcanoes depends on how the AMV index is detrended. If the AMV index is detrended using anthropogenic radiative forcing of climate, we find that surface cooling attributed to Mt. Pinatubo, using the Hadley Centre/University of East Anglia surface temperature record, maximises at 0.14 °C globally and 0.32 °C over land. These values are about a factor of 2 less than found when the AMV index is neglected in the model and quite a bit lower than the canonical 0.5 °C cooling usually attributed to Pinatubo. This result is driven by the high amplitude, low frequency component of the AMV index, demonstrating that reduced impact of volcanic cooling upon consideration of the AMV index is driven by variations in North Atlantic SST that occur over time periods much longer than those commonly associated with major volcanic eruptions. The satellite record of atmospheric temperature from 1978 to present and other century-long surface temperature records are also consistent with the suggestion that volcanic cooling may have been over estimated by about a factor of 2 due to prior neglect of ocean circulation. Our study suggests a recalibration may be needed for the proper use of Mt. Pinatubo as a proxy for geoengineering of climate. Finally, we highlight possible shortcomings in simulations of volcanic cooling by general circulation models, which are also being used to assess the impact of geoengineering of climate via stratospheric sulfate injection.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference132 articles.
1. Ammann, C. M., Meehl, G. A., Washington, W. M., and Zender, C. S.: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate, Geophys. Res. Lett., 30, 1657, https://doi.org/10.1029/2003GL016875, 2003. 2. Ammann, C. M., Washington, W. M., Meehl, G. A., Buja, L., and Teng, H.: Climate engineering through artificial enhancement of natural forcings: magnitudes and implied consequences, J. Geophys. Res., 115, D22109, https://doi.org/10.1029/2009JD012878, 2010. 3. Andronova, N. G. and Schlesinger, M. E.: Causes of global temperature changes during the 19th and 20th centuries, Geophys. Res. Lett., 27, 2137–2140, https://doi.org/10.1029/2000GL006109, 2000. 4. Boessenkool, K. P., Hall, I. R., Elderfield, H., and Yashayaev, I.: North Atlantic climate and deep-ocean flow speed changes during the last 230 years, Geophys. Res. Lett., 34, L13614, https://doi.org/10.1029/2007GL030285, 2007. 5. Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res., in press, https://doi.org/10.1002/jgrd.50171, 2013.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|