Author:
Hassane Maina Fadji,Ackerer Philippe
Abstract
Abstract. The solution of the mathematical model for flow in variably saturated porous media described by the Richards equation (RE) is subject to heavy numerical difficulties due to its highly nonlinear properties and remains very challenging. Two different algorithms are used in this work to solve the mixed form of RE: the traditional iterative algorithm and a time-adaptive algorithm consisting of changing the time-step magnitude within the iteration procedure while the nonlinear parameters are computed with the state variable at the previous time. The Ross method is an example of this type of scheme, and we show that it is equivalent to the Newton–Raphson method with a time-adaptive algorithm.Both algorithms are coupled to different time-stepping strategies: the standard heuristic approach based on the number of iterations and two strategies based on the time truncation error or on the change in water saturation. Three different test cases are used to evaluate the efficiency of these algorithms.The numerical results highlight the necessity of implementing an estimate of the time truncation errors.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference43 articles.
1. Bause, M. and Knabner, P.: Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods, Adv. Water Resour., 27, 565–581, https://doi.org/10.1016/j.advwatres.2004.03.005, 2004.
2. Belfort, B., Younes, A., Fahs, M., and Lehmann, F.: On equivalent hydraulic conductivity for oscillation–free solutions of Richard's equation, J. Hydrol., 505, 202–217, https://doi.org/10.1016/j.jhydrol.2013.09.047, 2013.
3. Bergamaschi, L. and Putti, M.: Mixed finite elements and Newton-type linearizations for the solution of Richards' equation, Int. J. Numer. Methods Eng., 45, 1025–1046, https://doi.org/10.1002/(SICI)1097-0207(19990720), 1999.
4. Bouchemella, S., Seridi, A., and Alimi-Ichola, I.: Numerical simulation of water flow in unsaturated soils: comparative study of different forms of Richards's equation, Eur. J. Environ. Civ. Eng. 19, 1–26, https://doi.org/10.1080/19648189.2014.926294, 2015.
5. Celia, M. A., Bouloutas, E. T., and Zarba, R. L.: A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res., 26, 1483–1496, https://doi.org/10.1029/WR026i007p01483, 1990.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献