Simulation of Drying‐Rewetting Processes in Numerical Groundwater Models Using a New Picard Iteration‐Based Method

Author:

Lu Chuiyu12,Lu Wen12ORCID,Sun Qingyan12,He Xin12ORCID,Yan Lingjia12,Qin Tao12,Wu Chu12ORCID,Han Shangqi12ORCID,Wu Zhenjiang12,Wu Weichen12

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins China Institute of Water Resources and Hydropower Research (IWHR) Beijing China

2. Department of Water Resources China Institute of Water Resources and Hydropower Research (IWHR) Beijing China

Abstract

AbstractWhen simulating groundwater flow in unconfined and convertible aquifers using a groundwater model with the block‐centered finite‐difference approach, such as MODFLOW, it frequently encounters drying and rewetting of cells. Although many drying and rewetting simulation methods have been proposed in the past, balancing simulation accuracy and convergence capability all at once is difficult. MODFLOW‐2005, which has second‐order accuracy, employs a trial‐and‐error method, but it suffers from computational instability when large quantities of grid cells are dried. MODFLOW‐NWT adopts the upstream‐weighting approach and Newton iteration method to ensure the stability of the drying and rewetting simulations. However, the upstream‐weighting approach has only first‐order accuracy, and the Newton iteration method is complex to implement because it necessitates the establishment of an additional Jacobian matrix. The methods employed by MODFLOW‐NWT are also available in MODFLOW 6, therefore it inherits both the strengths and weaknesses of MODFLOW‐NWT. In this study, a new method, Picard iteration‐based always active cell (PAAC), is proposed. Similar to MODFLOW‐NWT, the PAAC method also uses dry cells as active cells. The PAAC method, however, does not use the upstream‐weighting approach and has second‐order accuracy. Moreover, it ensures good convergence stability even under the Picard iteration method. In addition to discussing the algorithm, five cases were used to comprehensively compare the simulation effects of the PAAC method with MODFLOW‐2005 and MODFLOW‐NWT, including an analytical solution, repeated drying‐rewetting of multi‐layer grids, pumping well problem, perched aquifer problem and a nearly dry single‐layer grid, which verified the practicability of the PACC method.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3