Performance of ensemble streamflow forecasts under varied hydrometeorological conditions
-
Published:2017-10-19
Issue:10
Volume:21
Page:5273-5291
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Benninga Harm-Jan F.ORCID, Booij Martijn J.ORCID, Romanowicz Renata J., Rientjes Tom H. M.
Abstract
Abstract. The paper presents a methodology that gives insight into the performance of ensemble streamflow-forecasting systems. We have developed an ensemble forecasting system for the Biała Tarnowska, a mountainous river catchment in southern Poland, and analysed the performance for lead times ranging from 1 to 10 days for low, medium and high streamflow and different hydrometeorological conditions. Precipitation and temperature forecasts from the European Centre for Medium-Range Weather Forecasts served as inputs to a deterministic lumped hydrological (HBV) model. Due to a non-homogeneous bias in time, pre- and post-processing of the meteorological and streamflow forecasts are not effective. The best forecast skill, relative to alternative forecasts based on meteorological climatology, is shown for high streamflow and snow accumulation low-streamflow events. Forecasts of medium-streamflow events and low-streamflow events under precipitation deficit conditions show less skill. To improve performance of the forecasting system for high-streamflow events, the meteorological forecasts are most important. Besides, it is recommended that the hydrological model be calibrated specifically on low-streamflow conditions and high-streamflow conditions. Further, it is recommended that the dispersion (reliability) of the ensemble streamflow forecasts is enlarged by including the uncertainties in the hydrological model parameters and the initial conditions, and by enlarging the dispersion of the meteorological input forecasts.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference81 articles.
1. Akhtar, M., Ahmad, N., and Booij, M. J.: Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region, Hydrol. Earth Syst. Sci., 13, 1075–1089, https://doi.org/10.5194/hess-13-1075-2009, 2009. 2. Alfieri, L., Pappenberger, F., Wetterhall, F., Haiden, T., Richardson, D., and Salamon, P.: Evaluation of ensemble streamflow predictions in Europe, J. Hydrol., 517, 913–922, https://doi.org/10.1016/j.jhydrol.2014.06.035, 2014. 3. Bennett, J. C., Robertson, D. E., Shrestha, D. L., and Wang, Q. J.: Selecting reference streamflow forecasts to demonstrate the performance of NWP-forced streamflow forecasts, in: MODSIM 2013, 20th International Congress on Modelling and Simulation, edited by: Piantadosi, J., Anderssen, R. S., and Boland, J., Modelling and Simulation Society of Australia and New Zealand, Adelaide, Australia, 1–6 December 2013, available at: http://www.mssanz.org.au/modsim2013/L8/bennett.pdf (last access: 9 October 2017), 2013. 4. Bennett, J. C., Robertson, D. E., Shrestha, D. L., Wang, Q. J., Enever, D., Hapuarachchi, P., and Tuteja, N. K.: A System for Continuous Hydrological Ensemble Forecasting (SCHEF) to lead times of 9 days, J. Hydrol., 519, 2832–2846, https://doi.org/10.1016/j.jhydrol.2014.08.010, 2014. 5. Boé, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|