Hydrological impacts of global land cover change and human water use

Author:

Bosmans Joyce H. C.ORCID,van Beek Ludovicus P. H.ORCID,Sutanudjaja Edwin H.ORCID,Bierkens Marc F. P.ORCID

Abstract

Abstract. Human impacts on global terrestrial hydrology have been accelerating during the 20th century. These human impacts include the effects of reservoir building and human water use, as well as land cover change. To date, many global studies have focussed on human water use, but only a few focus on or include the impact of land cover change. Here we use PCR-GLOBWB, a combined global hydrological and water resources model, to assess the impacts of land cover change as well as human water use globally in different climatic zones. Our results show that land cover change has a strong effect on the global hydrological cycle, on the same order of magnitude as the effect of human water use (applying irrigation, abstracting water, for industrial use for example, including reservoirs, etc.). When globally averaged, changing the land cover from that of 1850 to that of 2000 increases discharge through reduced evapotranspiration. The effect of land cover change shows large spatial variability in magnitude and sign of change depending on, for example, the specific land cover change and climate zone. Overall, land cover effects on evapotranspiration are largest for the transition of tall natural vegetation to crops in energy-limited equatorial and warm temperate regions. In contrast, the inclusion of irrigation, water abstraction and reservoirs reduces global discharge through enhanced evaporation over irrigated areas and reservoirs as well as through water consumption. Hence, in some areas land cover change and water distribution both reduce discharge, while in other areas the effects may partly cancel out. The relative importance of both types of impacts varies spatially across climatic zones. From this study we conclude that land cover change needs to be considered when studying anthropogenic impacts on water resources.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3