Historical land-use-induced evapotranspiration changes estimated from present-day observations and reconstructed land-cover maps

Author:

Boisier J. P.,de Noblet-Ducoudré N.,Ciais P.

Abstract

Abstract. Recent results from the LUCID model intercomparison project have revealed large discrepancies in the simulated evapotranspiration (ET) response to the historical land-use change. Distinct land-surface parameterizations are behind those discrepancies, but understanding those differences rely on evaluations using still very limited measurements. Model benchmarking studies with observed ET are required in order to reduce the current uncertainties in the impacts of land use in terrestrial water flows. Here we present new estimates of historical land-use-induced ET changes based on three observation-driven products of ET. These products are used to derive empirical models of ET as a function of land-cover properties and environmental variables. An ensemble of reconstructions of past ET changes are derived with the same set of land-cover maps used in LUCID, with which we obtain an average decrease in global terrestrial ET of 1260 ± 850 km3 yr−1 between the preindustrial period and the present-day. This estimate is larger in magnitude than the mean ET change simulated within LUCID with process-based models, and substantially weaker than other estimates based on observations. Although decreases in annual ET dominate in deforested regions, large summertime increases in ET are diagnosed over areas of large cropland expansion. The multiple ET reconstructions carried out here show a large spread that we attribute principally to the different land-cover maps adopted and to the crops' ET rates deduced from the various products assessed. We therefore conclude that the current uncertainties of past ET changes could be reduced efficiently with improved historical land-cover reconstructions and better estimates of cropland ET.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3