Towards understanding tree root profiles: simulating hydrologically optimal strategies for root distribution

Author:

van Wijk M. T.,Bouten W.

Abstract

Abstract. In this modelling study differences in vertical root distributions measured in four contrasting forest locations in the Netherlands were investigated. Root distributions are seen as a reflection of the plant’s optimisation strategy, based on hydrological grounds. The "optimal" root distribution is defined as the one that maximises the water uptake from the root zone over a period of ten years. The optimal root distributions of four forest locations with completely different soil physical characteristics are calculated using the soil hydrological model SWIF. Two different model configurations for root interactions were tested: the standard model configuration in which one single root profile was used (SWIF-NC), and a model configuration in which two root profiles compete for the same available water (SWIF-C). The root profiles were parameterised with genetic algorithms. The fitness of a certain root profile was defined as the amount of water uptake over a simulation period of ten years. The root profiles of SWIF-C were optimised using an evolutionary game. The results showed clear differences in optimal root distributions between the various sites and also between the two model configurations. Optimisation with SWIF-C resulted in root profiles that were easier to interpret in terms of feasible biological strategies. Preferential water uptake in wetter soil regions was an important factor for interpretation of the simulated root distributions. As the optimised root profiles still showed differences with measured profiles, this analysis is presented, not as the final solution for explaining differences in root profiles of vegetation but as a first step using an optimisation theory to increase understanding of the root profiles of trees. Keywords: forest hydrology, optimisation, roots

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3