Machine learning detection of dust impact signals observed by the Solar Orbiter

Author:

Kvammen AndreasORCID,Wickstrøm Kristoffer,Kociscak SamuelORCID,Vaverka JakubORCID,Nouzak Libor,Zaslavsky ArnaudORCID,Rackovic Babic Kristina,Gjelsvik Amalie,Pisa DavidORCID,Soucek JanORCID,Mann IngridORCID

Abstract

Abstract. This article presents the results of automatic detection of dust impact signals observed by the Solar Orbiter – Radio and Plasma Waves instrument. A sharp and characteristic electric field signal is observed by the Radio and Plasma Waves instrument when a dust particle impacts the spacecraft at high velocity. In this way, ∼ 5–20 dust impacts are daily detected as the Solar Orbiter travels through the interplanetary medium. The dust distribution in the inner solar system is largely uncharted and statistical studies of the detected dust impacts will enhance our understanding of the role of dust in the solar system. It is however challenging to automatically detect and separate dust signals from the plural of other signal shapes for two main reasons. Firstly, since the spacecraft charging causes variable shapes of the impact signals, and secondly because electromagnetic waves (such as solitary waves) may induce resembling electric field signals. In this article, we propose a novel machine learning-based framework for detection of dust impacts. We consider two different supervised machine learning approaches: the support vector machine classifier and the convolutional neural network classifier. Furthermore, we compare the performance of the machine learning classifiers to the currently used on-board classification algorithm and analyze 2 years of Radio and Plasma Waves instrument data. Overall, we conclude that detection of dust impact signals is a suitable task for supervised machine learning techniques. The convolutional neural network achieves the highest performance with 96 % ± 1 % overall classification accuracy and 94 % ± 2 % dust detection precision, a significant improvement to the currently used on-board classifier with 85 % overall classification accuracy and 75 % dust detection precision. In addition, both the support vector machine and the convolutional neural network classifiers detect more dust particles (on average) than the on-board classification algorithm, with 16 % ± 1 % and 18 % ± 8 % detection enhancement, respectively. The proposed convolutional neural network classifier (or similar tools) should therefore be considered for post-processing of the electric field signals observed by the Solar Orbiter.

Funder

Norges Forskningsråd

Tromsø Forskningsstiftelse

Grantová Agentura České Republiky

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3