NOIRE-Net–a convolutional neural network for automatic classification and scaling of high-latitude ionograms

Author:

Kvammen Andreas,Vierinen Juha,Huyghebaert Devin,Rexer Theresa,Spicher Andres,Gustavsson Björn,Floberg Jens

Abstract

Millions of ionograms are acquired annually to monitor the ionosphere. The accumulated data contain untapped information from a range of locations, multiple solar cycles, and various geomagnetic conditions. In this study, we propose the application of deep convolutional neural networks to automatically classify and scale high-latitude ionograms. A supervised approach is implemented and the networks are trained and tested using manually analyzed oblique ionograms acquired at a receiver station located in Skibotn, Norway. The classification routine categorizes the observations based on the presence or absence of E− and F-region traces, while the scaling procedure automatically defines the E− and F-region virtual distances and maximum plasma frequencies. Overall, we conclude that deep convolutional neural networks are suitable for automatic processing of ionograms, even under auroral conditions. The networks achieve an average classification accuracy of 93% ± 4% for the E-region and 86% ± 7% for the F-region. In addition, the networks obtain scientifically useful scaling parameters with median absolute deviation values of 118 kHz ±27 kHz for the E-region maximum frequency and 105 kHz ±37 kHz for the F-region maximum O-mode frequency. Predictions of the virtual distance for the E− and F-region yield median distance deviation values of 6.1 km ± 1.7 km and 8.3 km ± 2.3 km, respectively. The developed networks may facilitate EISCAT 3D and other instruments in Fennoscandia by automatic cataloging and scaling of salient ionospheric features. This data can be used to study both long-term ionospheric trends and more transient ionospheric features, such as traveling ionospheric disturbances.

Funder

Universitetet i Tromsø

Publisher

Frontiers Media SA

Reference63 articles.

1. Optuna: a next-generation hyperparameter optimization framework;Akiba,2019

2. AE, DST, and their SuperMAG counterparts: the effect of improved spatial resolution in geomagnetic indices;Bergin;J. Geophys. Res. Space Phys.,2020

3. The international reference ionosphere 2012 - a model of international collaboration;Bilitza;J. Space Weather Space Clim.,2014

4. A radio method of estimating the height of the conducting layer;Breit;Nature,1925

5. A test of the existence of the conducting layer;Breit;Phys. Rev.,1926

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3