Immobilized photocatalyst on stainless steel woven meshes assuring efficient light distribution in a solar reactor

Author:

El-Kalliny A. S.ORCID,Ahmed S. F.,Rietveld L. C.,Appel P. W.

Abstract

Abstract. An immobilized TiO2 photocatalyst with a high specific surface area was prepared on stainless steel woven meshes in order to be used packed in layers for water purification. Immobilization of such a complex shape needs a special coating technique. For this purpose, dip coating and electrophoretic deposition (EPD) techniques were used. The EPD technique gave the TiO2 coating films a better homogeneity and adhesion, fewer cracks, and a higher ·OH formation than the dip coating technique. The woven mesh structure packed in layers guaranteed an efficient light-penetration in water treatment reactor. A simple equation model was used to describe the distribution of light through the mesh layers in the presence of absorbing medium (e.g., colored water with humic acids). Maximum three or four coated meshes were enough to harvest the solar UV light from 300 nm to 400 nm with a high penetration efficiency. The separation distance between the mesh layers played an important role in the efficiency of solar light penetration through the coated mesh layers, especially in case of colored water contaminated with high concentrations of humic acid.

Publisher

Copernicus GmbH

Subject

Pollution,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3