Sol–gel catalysts immobilized on stainless steel meshes for Ba2+ removal in a continuous flow process: An experimental design

Author:

Bueno Lisandra N.1,Fidelis Michel Zampieri2,Abreu Eduardo2,Tusset Angelo Marcelo3,Gonçalves Lenzi Giane1ORCID

Affiliation:

1. a Department of Chemical Engineering, University of Technology, Ponta Grossa, PR, Brazil

2. b Department of Chemical Engineering, State University of Maringa, Maringa, PR, Brazil

3. c Department of Industrial Engineering, Federal University of Technology, PR, Brazil

Abstract

Abstract This study describes the use of a continuous flow system for photocatalytic reactions employing a TiO2 sol–gel structured catalyst. The catalyst was immobilized on various stainless steel meshes to investigate the barium(II) removal. To verify its photocatalytic activity, batch tests were carried out and the results were compared to the commercial catalyst P25. Effects of thermal treatment on the structured catalyst were investigated. The continuous flow photocatalytic tests were conducted under different experimental conditions through an experimental design to verify the effect of the parameters (pH and volume flow). The results of the batch tests indicated that the TiO2 sol–gel catalyst showed very similar activity to the TiO2 P25 when used in powder suspension (32% reduction of Ba2+). In the continuous flow process, maximum adhesion of catalysts on meshes was found at a calcination temperature of 623 K. The experimental design indicated the pH as a significant parameter in the studied conditions. It was observed that at pH levels close to 7, also indicated by the study of the zero charge point and lower flow rates, it was possible to obtain ∼20% removal of Ba2+ ions, in a continuous flow reactor with a residence time of 83 min.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3