An update on the uncertainties of water vapor measurements using cryogenic
frost point hygrometers
-
Published:2016-08-16
Issue:8
Volume:9
Page:3755-3768
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Vömel HolgerORCID, Naebert Tatjana, Dirksen Ruud, Sommer MichaelORCID
Abstract
Abstract. Long time series of observations of essential climate variables in the troposphere and stratosphere are often impacted by inconsistencies in instrumentation and ambiguities in the interpretation of the data. To reduce these problems of long-term data series, all measurements should include an estimate of their uncertainty and a description of their sources. Here we present an update of the uncertainties for tropospheric and stratospheric water vapor observations using the cryogenic frost point hygrometer (CFH). The largest source of measurement uncertainty is the controller stability, which is discussed here in detail. We describe a method to quantify this uncertainty for each profile based on the measurements. We also show the importance of a manufacturer-independent ground check, which is an essential tool to continuously monitor the uncertainty introduced by instrument variability. A small bias, which has previously been indicated in lower tropospheric measurements, is described here in detail and has been rectified. Under good conditions, the total from all sources of uncertainty of frost point or dew point measurements using the CFH can be better than 0.2 K. Systematic errors, which are most likely to impact long-term climate series, are verified to be less than 0.1 K. The impact of the radiosonde pressure uncertainty on the mixing ratio for properly processed radiosondes is considered small. The mixing ratio uncertainty may be as low as 2 to 3 %. The impact of the ambient temperature uncertainty on relative humidity (RH) is generally larger than that of the frost point uncertainty. The relative RH uncertainty may be as low as 2 % in the lower troposphere and 5 % in the tropical tropopause region.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference23 articles.
1. Crutzen, P. J. and Arnold, F.: Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime “ozone hole”, Nature, 324, 651–655, https://doi.org/10.1038/324651a0, 1986. 2. Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H.: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, 2014. 3. Endlich, R. M., Enyon, B. P., Ferek, R., Valdes, A. D., and Mawell, C.: Statistical analysis of precipitation chemistry measurements over the eastern United States, Utility Acid Precipitation Study Program and Electric Power Research Institute, UAPSP Report 112, 3–9, 1986. 4. Fahey, D. W., Gao, R.-S., Möhler, O., Saathoff, H., Schiller, C., Ebert, V., Krämer, M., Peter, T., Amarouche, N., Avallone, L. M., Bauer, R., Bozóki, Z., Christensen, L. E., Davis, S. M., Durry, G., Dyroff, C., Herman, R. L., Hunsmann, S., Khaykin, S. M., Mackrodt, P., Meyer, J., Smith, J. B., Spelten, N., Troy, R. F., Vömel, H., Wagner, S., and Wienhold, F. G.: The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques, Atmos. Meas. Tech., 7, 3177–3213, https://doi.org/10.5194/amt-7-3177-2014, 2014. 5. Fujiwara, M., Shiotani, M., Hasebe, F., Vömel, H., Oltmans, S. J., Ruppert, P. W., Horinouchi, T., and Tsuda, T.: Performance of the Meteolabor “SnowWhite” chilled mirror hygrometer in the tropical troposphere: Comparisons with the Vaisala RS-80 A/H humicap sensors, J. Atmos. Ocean. Tech., 20, 1534–1542, 2003.
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|