South American 2020 regional smoke plume: intercomparison with previous years, impact on solar radiation, and the role of Pantanal biomass burning season
-
Published:2022-11-24
Issue:22
Volume:22
Page:15021-15033
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Rosário Nilton Évora do, Sena Elisa ThoméORCID, Yamasoe Marcia AkemiORCID
Abstract
Abstract. The 2020 biomass burning season in Brazil was marked by an atypical amount of fire across the Pantanal biome, which led to high levels of smoke within the biome and downwind areas. The present study analyzes fire counts and smoke over Pantanal in 2020, comparing this particular year's data with those from the previous 17 years (2003–2019). Taking as reference the most-polluted years in this period, the regional smoke plume and its impact on surface solar radiation were also evaluated. In 2020, the regional smoke plume core covered an area of ∼ 2.6×106 km2 at the peak of the burning season, an area well above that of the previous 6 years but smaller than areas observed in a more remote past, as in 2007 and 2010 (> 5.0×106 km2). The smoke loading was lower (mean aerosol optical depth, AOD, of 550 nm; ∼ 0.7) than that of 2007 and 2010 (mean AOD 550 nm; ∼ 1.0). The plume radiation absorption efficiency, when compared with the previous year's plumes, did not present significant differences. Regarding the Pantanal burning season, it revealed some atypical features. Fire counts were up to 3.0 times higher than for the years from 2003 to 2019. Smoke loading over Pantanal, which is typically a fraction of that over Amazonia, was higher in 2020 than that over Amazonia, an indication that local smoke surpassed the smoke advection from upwind regions. The observed intraseasonal variability in smoke over Pantanal revealed to be largely driven by the nature of the burned areas in the biome. From September on, there was a significant increase in fire count in conservation and indigenous areas, where higher biomass density is present, which would explain the larger smoke plumes over Pantanal, even during October when the fire count was reduced. In October, the biome was covered by a thick smoke layer, which resulted in a mean deficit of surface solar radiation up to 200 W m−2. Despite the Pantanal biomes' massive burning in 2020, the regional smoke plume was not far from its climatological features. Nevertheless, the Pantanal 2020 burning season represents the worst combination of a climate extreme applied to a fire-prone environment, coupled with inadequately enforced environmental regulations, from which there is much to be learned.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo Conselho Nacional de Desenvolvimento Científico e Tecnológico
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference47 articles.
1. Alho, C.:
Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation, Braz. J. Biol., 68, 957–966, https://doi.org/10.1590/S1519-69842008000500005, 2008. 2. Alho, C., Mamede, S., Benites, M., Andrade, B., and Sepulveda, J.:
Threats to the biodiversity of the brazilian Pantanal due to land use and occupation, Ambiente Sociedade, 22, 1–22, https://doi.org/10.1590/1809-4422asoc201701891vu2019L3AO, 2019. 3. Artaxo, P., Fernandas, E. T., Martins, J. V., Yamasoe, M. A., Hobbs, P. V., Maenhaut, W., Longo, K. M., and Castanho, A.:
Large-scale aerosol source apportionment in Amazonia, J. Geophys. Res.-Atmos., 103, 31837–31847, https://doi.org/10.1029/98JD02346, 1998. 4. Artaxo, P., Rizzo, L. V., Brito, J. F., Barbosa, H. M. J., Arana, A., Sena, E. T., Cirino, G. G., Bastos, W., Martin, S. T., and Andreae, M. O.:
Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions, Faraday Discuss., 165, 203–235, https://doi.org/10.1039/C3FD00052D, 2013. 5. Chen, Y., Morton, D. C., Jin, Y., Collatz, G. J., Kasibhatla, P. S., van der Werf, G. R., DeFries, R. S., and Randerson, J. T.:
Long-term trends and interannual variability of forest, savanna and agricultural fires in South America, Carbon Manag., 4, 617–638, https://doi.org/10.4155/cmt.13.61, 2013.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|