Investigation of the effects of the Greek extreme wildfires of August 2021 on air quality and spectral solar irradiance

Author:

Masoom AkritiORCID,Fountoulakis IliasORCID,Kazadzis SteliosORCID,Raptis Ioannis-PanagiotisORCID,Kampouri AnnaORCID,Psiloglou Basil E.,Kouklaki DimitraORCID,Papachristopoulou KyriakoulaORCID,Marinou EleniORCID,Solomos Stavros,Gialitaki AnnaORCID,Founda Dimitra,Salamalikis Vasileios,Kaskaoutis Dimitris,Kouremeti Natalia,Mihalopoulos Nikolaos,Amiridis VassilisORCID,Kazantzidis Andreas,Papayannis AlexandrosORCID,Zerefos Christos S.,Eleftheratos KostasORCID

Abstract

Abstract. In August 2021, a historic heatwave was recorded in Greece which resulted in extreme wildfire events that strongly affected the air quality over the city of Athens. Saharan dust was also transferred over Greece on certain days of the same period due to the prevailing southern winds. The impact of these events on air quality and surface solar radiation is investigated in this study. Event characterization based on active and passive remote sensing instrumentation has been performed. The study shows that significantly increased levels of air pollution were recorded from the end of July to the first week of August. The smoke led to unusually high aerosol optical depth (AOD) values (up to 3.6 at 500 nm), high Ångström exponent (AE) (up to 2.4 at 440–870 nm), and a strong and negative dependence of single-scattering albedo (SSA) on wavelength that was observed to decrease from 0.93 at 440 nm to 0.86 at 1020 nm, while the dust event led to high AOD (up to 0.7 at 500 nm), low AE (up to 0.9 at 440–870 nm), and a positive dependence of SSA on wavelength that was observed to increase from 0.89 at 440 nm to 0.95 at 1020. Furthermore, the smoke plume was also detected over the PANhellenic GEophysical observatory of Antikythera on 7 August, which is about 240 km away from Athens. Increased AOD values (up to ∼ 0.90 at 500 nm) associated with a high fine-mode AOD (up to ∼ 0.85 at 500 nm) and decrease in SSA with wavelength suggested the dominance of fine biomass burning aerosols. The impact of dust and smoke on solar irradiance revealed significant differences in the spectral dependence of the attenuation caused by the two different aerosol types. The attenuation of solar irradiance in the ultraviolet (UV-B) spectrum was found to be much lower in the case of dust compared to smoke for similar AOD500 values. Differences were less pronounced in the near-infrared and visible spectral regions. The large AODs during the wildfires resulted in a decrease in the noon UV index by up to 53 %, as well as in the daily effective doses for the production of vitamin D (up to 50 %), in the daily photosynthetically active radiation (up to 21 %) and in the daily global horizontal irradiance (up to 17 %), with serious implications for health, agriculture, and energy. This study highlights the wider impacts of wildfires that are part of the wider problem for Mediterranean countries, whose frequency is predicted to increase in view of the projected increasing occurrence of summer heatwaves.

Funder

Hellenic Foundation for Research and Innovation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference128 articles.

1. ADS (Atmosphere Data Store): https://ads.atmosphere.copernicus.eu/#/home, last access: 20 September 2022.

2. ALCProfile (EUMETNET): https://e-profile.eu/#/cm_profile, last access: 31 October 2022.

3. Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0.120 km), Air Force Geophysics Laboratory, https://apps.dtic.mil/sti/pdfs/ADA175173.pdf (last access: 28 December 2022), 1986.

4. Andreadis, E. A., Vourkas, G. I., Varelas, G., Angelopoulos, E. T., Gerasopoulos, E., Mihalopoulos, N., and Thomopoulos, C.: Air Pollution and Home Blood Pressure: The 2021 Athens Wildfires, High Blood Pressure &amp

5. Cardiovascular Prevention, 29, 619-624, https://doi.org/10.1007/s40292-022-00547-0, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3