Measurement report: Evolution and distribution of NH3 over Mexico City from ground-based and satellite infrared spectroscopic measurements

Author:

Herrera Beatriz,Bezanilla Alejandro,Blumenstock ThomasORCID,Dammers Enrico,Hase Frank,Clarisse Lieven,Magaldi Adolfo,Rivera ClaudiaORCID,Stremme WolfgangORCID,Strong KimberlyORCID,Viatte Camille,Van Damme Martin,Grutter MichelORCID

Abstract

Abstract. Ammonia (NH3) is the most abundant alkaline compound in the atmosphere, with consequences for the environment, human health, and radiative forcing. In urban environments, it is known to play a key role in the formation of secondary aerosols through its reactions with nitric and sulfuric acids. However, there are only a few studies about NH3 in Mexico City. In this work, atmospheric NH3 was measured over Mexico City between 2012 and 2020 by means of ground-based solar absorption spectroscopy using Fourier transform infrared (FTIR) spectrometers at two sites (urban and remote). Total columns of NH3 were retrieved from the FTIR spectra and compared with data obtained from the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument. The diurnal variability of NH3 differs between the two FTIR stations and is strongly influenced by the urban sources. Most of the NH3 measured at the urban station is from local sources, while the NH3 observed at the remote site is most likely transported from the city and surrounding areas. The evolution of the boundary layer and the temperature play a significant role in the recorded seasonal and diurnal patterns of NH3. Although the vertical columns of NH3 are much larger at the urban station, the observed annual cycles are similar for both stations, with the largest values in the warm months, such as April and May. The IASI measurements underestimate the FTIR NH3 total columns by an average of 32.2±27.5 % but exhibit similar temporal variability. The NH3 spatial distribution from IASI shows the largest columns in the northeast part of the city. In general, NH3 total columns over Mexico City measured at the FTIR stations exhibited an average annual increase of 92±3.9×1013 molecules cm−2 yr−1 (urban, from 2012 to 2019) and 8.4±1.4×1013 molecules cm−2 yr−1 (remote, from 2012 to 2020), while IASI data within 20 km of the urban station exhibited an average annual increase of 38±7.6×1013 molecules cm−2 yr−1 from 2008 to 2018.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference69 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3