Secondary ice production processes in wintertime alpine mixed-phase clouds
-
Published:2022-02-11
Issue:3
Volume:22
Page:1965-1988
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Georgakaki ParaskeviORCID, Sotiropoulou GeorgiaORCID, Vignon ÉtienneORCID, Billault-Roux Anne-ClaireORCID, Berne AlexisORCID, Nenes AthanasiosORCID
Abstract
Abstract. Observations of orographic mixed-phase clouds (MPCs) have long shown that
measured ice crystal number concentrations (ICNCs) can exceed the
concentration of ice nucleating particles by orders of magnitude.
Additionally, model simulations of alpine clouds are frequently found to
underestimate the amount of ice compared with observations. Surface-based
blowing snow, hoar frost, and secondary ice production processes have been
suggested as potential causes, but their relative importance and persistence remains highly uncertain. Here we study ice production mechanisms in wintertime orographic MPCs observed during the Cloud and Aerosol Characterization Experiment (CLACE) 2014 campaign at the Jungfraujoch site in the Swiss Alps with the Weather Research and Forecasting model (WRF). Simulations suggest that droplet shattering is not a significant source of ice crystals at this specific location, but breakups upon collisions between ice particles are quite active, elevating the predicted ICNCs by up to 3 orders of magnitude, which is consistent with observations. The initiation of the ice–ice collisional breakup mechanism is primarily associated with the occurrence of seeder–feeder events from higher precipitating cloud layers. The enhanced aggregation of snowflakes is found to drive secondary ice formation in the simulated clouds, the role of which is strengthened when the large hydrometeors interact with the primary ice crystals formed in the feeder cloud. Including a constant source of cloud ice crystals from blowing snow, through the action of the breakup mechanism, can episodically enhance ICNCs. Increases in secondary ice fragment generation can be counterbalanced by enhanced orographic precipitation, which seems to prevent explosive multiplication and cloud dissipation. These findings highlight the importance of secondary ice and seeding mechanisms – primarily falling ice from above and, to a lesser degree, blowing ice from the surface – which frequently enhance primary ice and determine the phase state and properties of MPCs.
Funder
H2020 European Research Council Svenska Forskningsrådet Formas
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference114 articles.
1. Atlas, R. L., Bretherton, C. S., Blossey, P. N., Gettelman, A., Bardeen, C.,
Lin, P., and Ming, Y.: How Well Do Large-Eddy Simulations and Global Climate
Models Represent Observed Boundary Layer Structures and Low Clouds Over the
Summertime Southern Ocean?, J. Adv. Model. Earth Sy., 12, 1–25,
https://doi.org/10.1029/2020MS002205, 2020. 2. Bacon, N. J., Swanson, B. D., Baker, M. B., and Davis, E. J.: Breakup of levitated frost particles, J. Geophys. Res.-Atmos., 103, 13763–13775, https://doi.org/10.1029/98JD01162, 1998. 3. Baltensperger, U., Schwikowski, M., Jost, D. T., Nyeki, S., Gäggeler, H.
W., and Poulida, O.: Scavenging of atmospheric constituents in mixed phase
clouds at the high-alpine site Jungfraujoch part I: Basic concept and
aerosol scavenging by clouds, Atmos. Environ., 32, 3975–3983,
https://doi.org/10.1016/S1352-2310(98)00051-X, 1998. 4. Beck, A., Henneberger, J., Fugal, J. P., David, R. O., Lacher, L., and Lohmann, U.: Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations, Atmos. Chem. Phys., 18, 8909–8927, https://doi.org/10.5194/acp-18-8909-2018, 2018. 5. Beheng, K. D.: Microphysical Properties of Glaciating Cumulus Clouds:
Comparison of Measurements With A Numerical Simulation, Q. J. Roy. Meteor.
Soc., 113, 1377–1382, https://doi.org/10.1002/qj.49711347815, 1987.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|