Measurement report: Characterization of sugars and amino acids in atmospheric fine particulates and their relationship to local primary sources

Author:

Zhu Ren-Guo,Xiao Hua-Yun,Cheng Liqin,Zhu Huixiao,Xiao HongweiORCID,Gong Yunyun

Abstract

Abstract. Sugars and amino acids are major classes of organic components in atmospheric fine particles and play important roles in atmospheric processes. However, the identification of their sources in different regions is explored little. To characterize local primary sources (biomass burning, plant, and soil sources) and evaluate their contributions to the total sugar compound and amino acid (AA) pool in different regions, fine particulate matter samples were collected from the urban, rural, and forest areas in Nanchang, China. The concentrations and compositions of sugar compounds (anhydrosugars, primary sugars, and sugar alcohols), free amino acids (FAAs), and combined amino acids (CAAs) were analysed by gas chromatography–mass spectrometry (GC-MS) after silylation derivatization. Urban areas had significantly higher average Σ sugar concentration (317±139 ng m−3) than that of the rural (181±72 ng m−3) and forest (275±154 ng m−3) areas (p<0.05). Overall, the distribution pattern of sugar compounds and CAAs in PM2.5 was generally similar in three areas. Levoglucosan accounted for 24.4 %, 22.0 %, and 21.7 %, respectively, of the total sugar pool in the urban, rural, and forest areas. This suggests that plant and soil sources, as well as biomass burning (BB), provide important contributions to aerosol sugars and CAAs in three areas. In the urban area, the concentrations of anhydrosugars showed a positive correlation with combined Gly concentrations, but no correlation was found between these two compounds in the rural and forest areas, indicating that the urban area is mainly affected by local combustion sources. This conclusion was also supported by the positive correlation between levoglucosan and non-sea-salt potassium, only observed in the urban area (Lev=0.07 K++37.7,r=0.6,p<0.05). In addition, the average levoglucosan / mannosan (L/M) ratio in the urban area (59.9) was much higher than in the rural (6.9) and forest areas (7.2), implying BB aerosols collected in the urban area originated from lignite burning, while the type of biofuels used in the rural and forest areas is mainly softwood. The concentrations of sugar alcohols in the rural and forest areas were positively correlated with that of CAAs, which are abundant in the topsoil (r=0.53∼0.62,p<0.05), suggesting that the contribution of local topsoil sources is large in these two areas. In the rural and forest areas, the concentrations of primary sugars were positively correlated with those of combined CAA species abundant in local dominant vegetation. Our findings suggest that combining specific sugar tracers and chemical profiles of CAAs in local emission sources can provide insight into primary source characteristics, including the types of biofuels burned, the contribution of topsoil sources, and local vegetation types.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3