Secondary organic aerosols from OH oxidation of cyclic volatile methyl siloxanes as an important Si source in the atmosphere

Author:

Han Chong,Yang Hongxing,Li KunORCID,Lee Patrick,Liggio John,Leithead AmyORCID,Li Shao-MengORCID

Abstract

Abstract. Cyclic volatile methyl siloxanes (cVMSs), which can volatilize into the atmosphere, are active ingredients in widely used consumer products, thus attracting much attention due to their potential environmental risks. While in the atmosphere the cVMSs undergo oxidation, yielding both gaseous and particulate products. The aerosol yields and compositions from the OH oxidation of four cVMSs (D3–D6) were determined under low- and high-NOx conditions in an oxidation flow reactor. The aerosol yields increased progressively from D3 to D6, consistent with the volatilities and molecule weights of these cVMSs. NOx can restrict the formation of secondary organic aerosols (SOAs), leading to lower SOA yields under high-NOx conditions than under low-NOx conditions, with a yield decrease between 0.05–0.30 depending on the cVMSs. Ammonium sulfate seeds exhibited minor impacts on SOA yields under low-NOx conditions but significantly increased the SOA yields in the oxidation of D3–D5 at short photochemical ages under high-NOx conditions. The mass spectra of the SOAs showed a dependence of its chemical compositions on OH exposure. At high exposures equivalent to photochemical ages of >4 d in the atmosphere, D4–D6 SOAs mainly consisted of CxHy and CxHyOzSin under low-NOx conditions, whereas they primarily contained NmOz, CxHy, CxHyO1, CxHyO>1 and CxHyOzSin under high-NOx conditions. The potential contributions of cVMSs to SOA formation in the atmosphere were evaluated using the reported cVMSs annual production and the yield obtained in the present study. A global cVMS-derived (D4–D6) SOA source strength is estimated to be 0.01 Tg yr−1, distributed over major urban centers.

Funder

Fundamental Research Funds for the Central Universities

Liaoning Revitalization Talents Program

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3