Volatile oxidation products and secondary organosiloxane aerosol from D5 + OH at varying OH exposures
-
Published:2023-11-20
Issue:22
Volume:23
Page:14307-14323
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Kang Hyun Gu, Chen Yanfang, Park Yoojin, Berkemeier ThomasORCID, Kim Hwajin
Abstract
Abstract. Siloxanes are composed of silicon, oxygen, and alkyl groups and are emitted from consumer chemicals. Despite being entirely anthropogenic, siloxanes are being detected in remote regions and are ubiquitous in indoor and urban environments. Decamethylcyclopentasiloxane (D5) is one of the most common cyclic congeners, and smog chamber and oxidation flow reactor (OFR) experiments have found D5 + OH to form secondary organosiloxane aerosol (SOSiA). However, there is uncertainty about the reaction products and the reported SOSiA mass yields (YSOSiA) appear inconsistent. To quantify small volatile oxidation products (VOPs) and to consolidate the YSOSiA in the literature, we performed experiments using a potential aerosol mass OFR while varying D5 concentration, humidity, and OH exposure (OHexp). We use a proton transfer reaction time-of-flight mass spectrometer to quantify D5, HCHO, and HCOOH and to detect other VOPs, which we tentatively identify as siloxanols and siloxanyl formates. We determine molar yields of HCHO and HCOOH between 52 %–211 % and 45 %–127 %, respectively. With particle size distributions measured with a scanning mobility particle sizer, we find YSOSiA to be < 10 % at OHexp < 1.3 × 1011 s cm−3 and ∼ 20 % at OHexp, corresponding to that of the lifetime of D5 at atmospheric OH concentrations. We also find that YSOSiA is dependent on both organic aerosol mass loading and OHexp. We use a kinetic box model of SOSiA formation and oxidative aging to explain the YSOSiA values found in this study and the literature. The model uses a volatility basis set (VBS) of the primary oxidation products as well as an aging rate coefficient in the gas phase, kage,gas, of 2.2×10-12 cm3 s−1 and an effective aging rate coefficient in the particle phase, kage,particle, of 2.0 × 10−12 cm3 s−1. The combination of a primary VBS and OH-dependent oxidative aging predicts SOSiA formation much better than a standard-VBS parameterization that does not consider aging (root mean square error = 42.6 vs. 96.5). In the model, multi-generational aging of SOSiA products occurred predominantly in the particle phase. The need for an aging-dependent parameterization to accurately model SOSiA formation shows that concepts developed for secondary organic aerosol precursors, which can form low-volatile products at low OHexp, do not necessarily apply to D5 + OH. The resulting yields of HCHO and HCOOH and the parameterization of YSOSiA may be used in larger-scale models to assess the implications of siloxanes for air quality.
Funder
National Research Foundation of Korea
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference88 articles.
1. Alton, M. W. and Browne, E. C.: Atmospheric Chemistry of Volatile Methyl Siloxanes: Kinetics and Products of Oxidation by OH Radicals and Cl Atoms, Environ. Sci. Technol., 54, 5992–5999, https://doi.org/10.1021/acs.est.0c01368, 2020. 2. Alton, M. W. and Browne, E. C.: Atmospheric Degradation of Cyclic Volatile Methyl Siloxanes: Radical Chemistry and Oxidation Products, ACS Environmental Au, https://doi.org/10.1021/acsenvironau.1c00043, 2022. 3. Arata, C., Misztal, P. K., Tian, Y., Lunderberg, D. M., Kristensen, K., Novoselac, A., Vance, M. E., Farmer, D. K., Nazaroff, W. W., and Goldstein, A. H.: Volatile organic compound emissions during HOMEChem, Indoor Air, 31, 2099–2117, https://doi.org/10.1111/ina.12906, 2021. 4. Atkinson, R.: Kinetics of the gas-phase reactions of a series of organosilicon compounds with hydroxyl and nitrate(NO3) radicals and ozone at 297 ± 2 K, Environ. Sci. Technol., 25, 863–866, https://doi.org/10.1021/es00017a005, 1991. 5. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|