Weakening of tropical sea breeze convective systems through interactions of aerosol, radiation, and soil moisture
-
Published:2022-08-19
Issue:16
Volume:22
Page:10527-10549
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Park J. MinnieORCID, van den Heever Susan C.ORCID
Abstract
Abstract. This study investigates how the enhanced loading of microphysically and radiatively active aerosol particles impacts tropical sea breeze convective systems and whether these impacts are modulated by the many environments that support these cloud systems. Comparisons of two 130-member pristine and polluted ensembles demonstrate that aerosol direct effects reduce the surface incoming shortwave radiation and the surface outgoing longwave radiation. Changes in the ensemble median values of the surface latent heat flux, the mixed layer depth, the mixed layer convective available potential energy, the maximum inland sea breeze extent, and the sea breeze frontal lift suggest that enhanced aerosol loading generally creates a less favorable environment for sea breeze convective systems. However, the sign and magnitude of these aerosol-induced changes are occasionally modulated by the surface, wind, and low-level thermodynamic conditions. As reduced surface fluxes and instability inhibit the convective boundary layer development, updraft velocities of the daytime cumulus convection developing ahead of the sea breeze front are robustly reduced in polluted environments across the environments tested. Statistical emulators and variance-based sensitivity analyses reveal that the soil saturation fraction is the most important environmental factor contributing to the updraft velocity variance of this daytime cumulus convection, but that it becomes a less important contributor with enhanced aerosol loading. It is also demonstrated that increased aerosol loading generally results in a weakening of the sea-breeze-initiated convection. This suppression is particularly robust when the sea-breeze-initiated convection is shallower and, hence, restricted to
warm rain processes. While the less favorable convective environment
arising from aerosol direct effects also restricts the development of sea-breeze-initiated deep convection in some cases, the response does appear to be environmentally modulated, with some cases producing stronger convective updrafts in more polluted environments. Sea breeze precipitation is ubiquitously suppressed with enhanced aerosol loading across all of the
environments tested; however, the magnitude of this suppression remains a
function of the initial environment. Altogether, our results highlight the
importance of evaluating both direct and indirect aerosol effects on
convective systems under the wide range of convective environments.
Funder
Office of Naval Research
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference105 articles.
1. Adams, A. M., Prospero, J. M., and Zhang, C.: CALIPSO-Derived
Three-Dimensional Structure of Aerosol over the Atlantic Basin and Adjacent
Continents, J. Climate, 25, 6862–6879, https://doi.org/10.1175/JCLI-D-11-00672.1, 2012. 2. Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. 3. Altaratz, O., Koren, I., Reisin, T., Kostinski, A., Feingold, G., Levin, Z., and Yin, Y.: Aerosols' influence on the interplay between condensation, evaporation and rain in warm cumulus cloud, Atmos. Chem. Phys., 8, 15–24, https://doi.org/10.5194/acp-8-15-2008, 2008. 4. Andreae, M. O., Chapuis, A., Cros, B., Fontan, J., Helas, G., Justice, C.,
Kaufman, Y. J., Minga, A., and Nganga, D.: Ozone and Aitken nuclei over
equatorial Africa: Airborne observations during DECAFE 88, J. Geophys. Res.,
97, 6137–6148, https://doi.org/10.1029/91JD00961, 1992. 5. Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P.,
Longo, K. M., and Silva-Dias, M. A. F.: Smoking Rain Clouds over the Amazon,
Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|