Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties

Author:

LeBlanc Samuel E.ORCID,Segal-Rozenhaimer Michal,Redemann JensORCID,Flynn Connor,Johnson Roy R.,Dunagan Stephen E.,Dahlgren RobertORCID,Kim JhoonORCID,Choi MyungjeORCID,da Silva ArlindoORCID,Castellanos Patricia,Tan Qian,Ziemba Luke,Lee Thornhill Kenneth,Kacenelenbogen Meloë

Abstract

Abstract. Aerosol particles can be emitted, transported, removed, or transformed, leading to aerosol variability at scales impacting the climate (days to years and over hundreds of kilometers) or the air quality (hours to days and from meters to hundreds of kilometers). We present the temporal and spatial scales of changes in AOD (aerosol optical depth) and aerosol size (using Ångström exponent – AE; fine-mode fraction – FMF) over Korea during the 2016 KORUS-AQ (KORea–US Air Quality) atmospheric experiment. We use measurements and retrievals of aerosol optical properties from airborne instruments for remote sensing (4STAR; Spectrometers for Sky-Scanning Sun-Tracking Atmospheric Research) and in situ (LARGE; NASA Langley Aerosol Research Group Experiment) on board the NASA DC-8 and geostationary satellites (GOCI; Geostationary Ocean Color Imager; Yonsei aerosol retrieval – YAER, version 2) as well as from reanalysis (MERRA-2; Modern-Era Retrospective Analysis for Research and Applications, version 2). Measurements from 4STAR when flying below 1000 m show an average AOD at 501 nm of 0.36 and an average AE of 1.11 with large standard deviation (0.12 and 0.15 for AOD and AE, respectively), likely due to mixing of different aerosol types (fine and coarse mode). The majority of AOD due to fine-mode aerosol is observed at altitudes lower than 2 km. Even though there are large variations, for 18 out of the 20 flight days, the column AOD measurements by 4STAR along the NASA DC-8 flight trajectories match the South Korean regional average derived from GOCI. GOCI-derived FMF, which was found to be slightly low compared to AErosol RObotic NETwork (AERONET) sites (Choi et al., 2018), is lower than 4STAR's observations during KORUS-AQ. Understanding the variability of aerosols helps reduce uncertainties in the aerosol direct radiative effect by quantifying the errors due to interpolating between sparse aerosol observation sites or modeled pixels, potentially reducing uncertainties in the upcoming observational capabilities. We observed that, contrary to the prevalent understanding, AE and FMF are more spatially variable than AOD during KORUS-AQ, even when accounting for potential sampling biases by using Monte Carlo resampling. Averaging between measurements and models for the entire KORUS-AQ period, the reduction in correlation by 15 % is 65.0 km for AOD and shorter at 22.7 km for AE. While there are observational and model differences, the predominant factor influencing spatial–temporal homogeneity is the meteorological period. High spatiotemporal variability occurs during the dynamic period (25–31 May), and low spatiotemporal variability occurs during the blocking pattern (1–7 June). While AOD and FMF / AE are interrelated, the spatial variability and relative variability of these parameters in this study indicate that microphysical processes vary at scales shorter than aerosol concentration processes at which microphysical processes such as aerosol particle formation, growth, and coagulation mostly impact the dominant aerosol size (characterized by, e.g., FMF / AE) and to some degree AOD. In addition to impacting aerosol size, aerosol concentration processes such as aerosol emission, transport, and removal mostly impact the AOD.

Funder

Earth Sciences Division

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference71 articles.

1. Anderson, T. L., Charlson, R. J., Winker, D. M., Ogren, J. A., and Holmén, K.: Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119–136, https://doi.org/10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2, 2003.

2. Baibakov, K., LeBlanc, S., Ranjbar, K., O'Neill, N. T., Wolde, M., Redemann, J., Pistone, K., Li, S.-M., Liggio, J., Hayden, K., Chan, T. W., Wheeler, M. J., Nichman, L., Flynn, C., and Johnson, R.: Airborne and ground-based measurements of aerosol optical depth of freshly emitted anthropogenic plumes in the Athabasca Oil Sands Region, Atmos. Chem. Phys., 21, 10671–10687, https://doi.org/10.5194/acp-21-10671-2021, 2021.

3. Buchard, V., Randles, C. A., da Silva, A. M., Darmenov, A., Colarco, P. R., Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A. J., Ziemba, L. D., and Yu, H.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies, J. Climate, 30, 6851–6872, https://doi.org/10.1175/JCLI-D-16-0613.1, 2017.

4. Cantrell, C. A.: Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems, Atmos. Chem. Phys., 8, 5477–5487, https://doi.org/10.5194/acp-8-5477-2008, 2008.

5. Choi, J., Park, R. J., Lee, H.-M., Lee, S., Jo, D. S., Jeong, J. I., Henze, D. K., Woo, J.-H., Ban, S.-J., Lee, M.-D., Lim, C.-S., Park, M.-K., Shin, H. J., Cho, S., Peterson, D., and Song, C.-K.: Impacts of local vs. trans-boundary emissions from different sectors on PM2.5 exposure in South Korea during the KORUS-AQ campaign, Atmos. Environ., 203, 196–205, https://doi.org/10.1016/j.atmosenv.2019.02.008, 2019.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3