Model output statistics (MOS) applied to Copernicus Atmospheric Monitoring Service (CAMS) O3 forecasts: trade-offs between continuous and categorical skill scores

Author:

Petetin HervéORCID,Bowdalo Dene,Bretonnière Pierre-AntoineORCID,Guevara MarcORCID,Jorba OriolORCID,Mateu Armengol Jan,Samso Cabre Margarida,Serradell KimORCID,Soret AlbertORCID,Pérez Garcia-Pando CarlosORCID

Abstract

Abstract. Air quality (AQ) forecasting systems are usually built upon physics-based numerical models that are affected by a number of uncertainty sources. In order to reduce forecast errors, first and foremost the bias, they are often coupled with model output statistics (MOS) modules. MOS methods are statistical techniques used to correct raw forecasts at surface monitoring station locations, where AQ observations are available. In this study, we investigate the extent to which AQ forecasts can be improved using a variety of MOS methods, including moving average, quantile mapping, Kalman filter, analogs and gradient boosting machine methods, and consider as well the persistence method as a reference. We apply our analysis to the Copernicus Atmospheric Monitoring Service (CAMS) regional ensemble median O3 forecasts over the Iberian Peninsula during 2018–2019. A key aspect of our study is the evaluation, which is performed using a comprehensive set of continuous and categorical metrics at various timescales, along different lead times and using different meteorological input datasets. Our results show that O3 forecasts can be substantially improved using such MOS corrections and that improvements go well beyond the correction of the systematic bias. Depending on the timescale and lead time, root mean square errors decreased from 20 %–40 % to 10 %–30 %, while Pearson correlation coefficients increased from 0.7–0.8 to 0.8–0.9. Although the improvement typically affects all lead times, some MOS methods appear more adversely impacted by the lead time. The MOS methods relying on meteorological data were found to provide relatively similar performance with two different meteorological inputs. Importantly, our results also clearly show the trade-offs between continuous and categorical skills and their dependencies on the MOS method. The most sophisticated MOS methods better reproduce O3 mixing ratios overall, with the lowest errors and highest correlations. However, they are not necessarily the best in predicting the peak O3 episodes, for which simpler MOS methods can achieve better results. Although the complex impact of MOS methods on the distribution of and variability in raw forecasts can only be comprehended through an extended set of complementary statistical metrics, our study shows that optimally implementing MOS in AQ forecast systems crucially requires selecting the appropriate skill score to be optimized for the forecast application of interest.

Funder

Agencia Estatal de Investigación

H2020 Marie Skłodowska-Curie Actions

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference32 articles.

1. Borrego, C., Monteiro, A., Pay, M., Ribeiro, I., Miranda, A., Basart, S., and Baldasano, J.: How bias-correction can improve air quality forecasts over Portugal, Atmos. Environ., 45, 6629–6641, https://doi.org/10.1016/j.atmosenv.2011.09.006, 2011. a

2. Bowdalo, D.: Globally Harmonised Observational Surface Treatment: Database of global surface gas observations, in preparation, 2022. a

3. Caruana, R. and Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms using different performance metrics, Tech. rep., Technical Report TR2005-1973, Cornell University, 2005. a

4. Copernicus: Catalogue, Copernicus [data set], https://atmosphere.copernicus.eu/catalogue#/, last access: 20 November 2020. a

5. Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, 2017. a

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3