1. Borrego, C., Monteiro, A., Pay, M., Ribeiro, I., Miranda, A., Basart, S., and
Baldasano, J.: How bias-correction can improve air quality forecasts over
Portugal, Atmos. Environ., 45, 6629–6641,
https://doi.org/10.1016/j.atmosenv.2011.09.006, 2011. a
2. Bowdalo, D.: Globally Harmonised Observational Surface Treatment: Database of
global surface gas observations, in preparation, 2022. a
3. Caruana, R. and Niculescu-Mizil, A.: An empirical comparison of supervised
learning algorithms using different performance metrics, Tech. rep.,
Technical Report TR2005-1973, Cornell University, 2005. a
4. Copernicus: Catalogue, Copernicus [data set], https://atmosphere.copernicus.eu/catalogue#/, last access: 20 November 2020. a
5. Copernicus Climate Change Service (C3S): ERA5: Fifth generation of ECMWF
atmospheric reanalyses of the global climate, 2017. a