Technical note: Improving the European air quality forecast of the Copernicus Atmosphere Monitoring Service using machine learning techniques

Author:

Bertrand Jean-Maxime,Meleux Frédérik,Ung Anthony,Descombes Gaël,Colette AugustinORCID

Abstract

Abstract. Model output statistics (MOS) approaches relying on machine learning algorithms were applied to downscale regional air quality forecasts produced by CAMS (Copernicus Atmosphere Monitoring Service) at hundreds of monitoring sites across Europe. Besides the CAMS forecast, the predictors in the MOS typically include meteorological variables but also ancillary data. We explored first a “local” approach where specific models are trained at each site. An alternative “global” approach where a single model is trained with data from the whole geographical domain was also investigated. In both cases, local predictors are used for a given station in predictive mode. Because of its global nature, the latter approach can capture a variety of meteorological situations within a very short training period and is thereby more suited to cope with operational constraints in relation to the training of the MOS (frequent upgrades of the modelling system, addition of new monitoring sites). Both approaches have been implemented using a variety of machine learning algorithms: random forest, gradient boosting, and standard and regularized multi-linear models. The quality of the MOS predictions is evaluated in this work for four key pollutants, namely particulate matter (PM10 and PM2.5), ozone (O3) and nitrogen dioxide (NO2), according to scores based on the predictive errors and on the detection of pollution peaks (exceedances of the regulatory thresholds). Both the local and the global approaches significantly improve the performances of the raw ensemble forecast. The most important result of this study is that the global approach competes with and can even outperform the local approach in some cases. This global approach gives the best RMSE scores when relying on a random forest model for the prediction of daily mean, daily max and hourly concentrations. By contrast, it is the gradient boosting model which is better suited for the detection of exceedances of the European Union regulated threshold values for O3 and PM10.

Funder

European Centre for Medium-Range Weather Forecasts

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3