Simulation of the effects of low-volatility organic compounds on aerosol number concentrations in Europe

Author:

Patoulias David,Pandis Spyros N.

Abstract

Abstract. PMCAMx-UF, a three-dimensional chemical transport model focusing on the simulation of the ultrafine particle size distribution and composition has been extended with the addition of reactions of chemical aging of semivolatile anthropogenic organic vapors, the emissions and chemical aging of intermediate-volatility organic compounds (IVOCs), and the production of extremely low-volatility organic compounds (ELVOCs) by monoterpenes. The model is applied in Europe to quantify the effect of these processes on particle number concentrations. The model predictions are evaluated against both ground measurements collected during the PEGASOS 2012 summer campaign across many stations in Europe and airborne observations by a zeppelin measuring above Po Valley, Italy. PMCAMx-UF reproduces the ground level daily average concentrations of particles with a diameter larger than 100 nm (N100) with normalized mean error (NME) of 45 % and normalized mean bias (NMB) close to 10 %. For the same simulation, PMCAMx-UF tends to overestimate the concentration of particles with a diameter larger than 10 nm (N10) with a daily NMB of 23 % and a daily NME of 63 %. The model was able to reproduce more than 75 % of the N10 and N100 airborne observations (zeppelin) within a factor of 2. According to the PMCAMx-UF predictions, the ELVOC production by monoterpenes leads to surprisingly small changes of the average number concentrations over Europe. The total number concentration decreased due to the ELVOC formation by 0.2 %, N10 decreased by 1.1 %, N50 (particles with a diameter larger than 50 nm) increased by 3 %, and N100 increased by 4 % due to this new secondary organic aerosol (SOA) source. This small change is due to the nonlinearity of the system, with increases predicted in some areas and decreases in others, but also the cancelation of the effects of the various processes like accelerated growth and accelerated coagulation. Locally, the effects can be significant. For example, an increase in N100 by 20 %–50 % is predicted over Scandinavia and significant increases (10 %–20 %) are predicted over some parts of central Europe. The ELVOCs contributed on average around 0.5 µg m−3 and accounted for 10 %–15 % of the PM2.5 OA. The addition of IVOC emissions and their aging reactions led to a surprising reduction of the total number of particles (Ntot) and N10 by 10 %–15 % and 5 %–10 %, respectively, and to an increase in the concentration of N100 by 5 %–10 %. These were due to the accelerated coagulation and reduced nucleation rates.

Funder

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3