The simulation of mineral dust in the United Kingdom Earth System Model UKESM1

Author:

Woodward Stephanie,Sellar Alistair A.ORCID,Tang Yongming,Stringer MarcORCID,Yool AndrewORCID,Robertson Eddy,Wiltshire Andy

Abstract

Abstract. Mineral dust plays an important role in Earth system models and is linked to many components, including atmospheric wind speed, precipitation and radiation, surface vegetation cover and soil properties and oceanic biogeochemical systems. In this paper, the dust scheme in the first configuration of the United Kingdom Earth System Model UKESM1 is described, and simulations of dust and its radiative effects are presented and compared with results from the parallel coupled atmosphere–ocean general circulation model (GCM) HadGEM3-GC3.1. Not only changes in the driving model fields but also changes in the dust size distribution are shown to lead to considerable differences to the present-day dust simulations and to projected future changes. UKESM1 simulations produce a present-day, top-of-the-atmosphere (ToA) dust direct radiative effect (DRE – defined as the change in downward net flux directly due to the presence of dust) of 0.086 W m−2 from a dust load of 19.5 Tg. Under climate change pathways these values decrease considerably. In the 2081–2100 mean of the Shared Socioeconomic Pathway SSP5–8.45 ToA DRE reaches 0.048 W m−2 from a load of 15.1 Tg. In contrast, in HadGEM3-GC3.1 the present-day values of −0.296 W m−2 and 15.0 Tg are almost unchanged at −0.289 W m−2 and 14.5 Tg in the 2081–2100 mean. The primary mechanism causing the differences in future dust projections is shown to be the vegetation response, which dominates over the direct effects of warming in our models. Though there are considerable uncertainties associated with any such estimates, the results presented demonstrate both the importance of the size distribution for dust modelling and also the necessity of including Earth system processes such as interactive vegetation in dust simulations for climate change studies.

Funder

Department for Business, Energy and Industrial Strategy, UK Government

Department for Environment, Food and Rural Affairs, UK Government

Natural Environment Research Council

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3