Evaluating NOx emissions and their effect on O3 production in Texas using TROPOMI NO2 and HCHO

Author:

Goldberg Daniel L.ORCID,Harkey Monica,de Foy BenjaminORCID,Judd Laura,Johnson JeremiahORCID,Yarwood GregORCID,Holloway Tracey

Abstract

Abstract. The Tropospheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor (S5P) satellite is a valuable source of information to monitor the NOx emissions that adversely affect air quality. We conduct a series of experiments using a 4×4 km2 Comprehensive Air Quality Model with Extensions (CAMx) simulation during April–September 2019 in eastern Texas to evaluate the multiple challenges that arise from reconciling the NOx emissions in model simulations with TROPOMI. We find an increase in NO2 (+17 % in urban areas) when transitioning from the TROPOMI NO2 version 1.3 algorithm to the version 2.3.1 algorithm in eastern Texas, with the greatest difference (+25 %) in the city centers and smaller differences (+5 %) in less polluted areas. We find that lightning NOx emissions in the model simulation contribute up to 24 % of the column NO2 in the areas over the Gulf of Mexico and 8% in Texas urban areas. NOx emissions inventories, when using locally resolved inputs, agree with NOx emissions derived from TROPOMI NO2 version 2.3.1 to within 20 % in most circumstances, with a small NOx underestimate in Dallas–Fort Worth (−13 %) and Houston (−20 %). In the vicinity of large power plant plumes (e.g., Martin Lake and Limestone) we find larger disagreements, i.e., the satellite NO2 is consistently smaller by 40 %–60 % than the modeled NO2, which incorporates measured stack emissions. We find that TROPOMI is having difficulty distinguishing NO2 attributed to power plants from the background NO2 concentrations in Texas – an area with atmospheric conditions that cause short NO2 lifetimes. Second, the NOx/NO2 ratio in the model may be underestimated due to the 4 km grid cell size. To understand ozone formation regimes in the area, we combine NO2 column information with formaldehyde (HCHO) column information. We find modest low biases in the model relative to TROPOMI HCHO, with −9 % underestimate in eastern Texas and −21 % in areas of central Texas with lower biogenic volatile organic compound (VOC) emissions. Ozone formation regimes at the time of the early afternoon overpass are NOx limited almost everywhere in the domain, except along the Houston Ship Channel, near the Dallas/Fort Worth International airport, and in the presence of undiluted power plant plumes. There are likely NOx-saturated ozone formation conditions in the early morning hours that TROPOMI cannot observe and would be well-suited for analysis with NO2 and HCHO from the upcoming TEMPO (Tropospheric Emissions: Monitoring Pollution) mission. This study highlights that TROPOMI measurements offer a valuable means to validate emissions inventories and ozone formation regimes, with important limitations.

Funder

Texas Commission on Environmental Quality

Earth Sciences Division

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3