Towards sector-based attribution using intra-city variations in satellite-based emission ratios between CO2 and CO

Author:

Wu DienORCID,Liu JunjieORCID,Wennberg Paul O.ORCID,Palmer Paul I.ORCID,Nelson Robert R.ORCID,Kiel MatthäusORCID,Eldering AnnmarieORCID

Abstract

Abstract. Carbon dioxide (CO2) and air pollutants such as carbon monoxide (CO) are co-emitted by many combustion sources. Previous efforts have combined satellite-based observations of multiple tracers to calculate their emission ratio (ER) for inferring combustion efficiency at the regional to city scale. Very few studies have focused on combustion efficiency at the sub-city scale or related it to emission sectors using space-based observations. Several factors are important for interpreting and deriving spatially resolved ERs from asynchronous satellite measurements, including (1) variations in meteorological conditions given the mismatch in satellite overpass times, (2) differences in vertical sensitivity of the retrievals (i.e., averaging kernel profiles), (3) interferences from the biosphere and biomass burning, and (4) the mismatch in the daytime variations of CO and CO2 emissions. In this study, we extended an established emission estimate approach to arrive at spatially resolved ERs based on retrieved column-averaged CO2 (XCO2) from the Snapshot Area Mapping (SAM) mode of the Orbiting Carbon Observatory-3 (OCO-3) and column-averaged CO from the TROPOspheric Monitoring Instrument (TROPOMI). To evaluate the influences of the confounding factors listed above and further attribute intra-urban variations in ERs to certain sectors, we leveraged a Lagrangian atmospheric transport model with an urban land cover classification dataset and reported ERCO values from the sounding level to the overpass and city level. We found that the differences in overpass times and averaging kernels between OCO and TROPOMI strongly affect the estimated spatially resolved ERCO. Specifically, a time difference of >3 h typically led to dramatic changes in wind directions and urban plume shapes, thereby making the calculation of accurate sounding-specific ERCO difficult. After removing such cases from consideration and applying a simple plume shift method when necessary to account for changes in wind direction and speed, we discovered significant contrasts in combustion efficiencies between (1) two megacities versus two industry-oriented cities and (2) different regions within a city, based on six nearly coincident overpasses per city. Results suggest that the ERCO impacted by heavy industry in Los Angeles is slightly lower than the overall city-wide value (<10 ppb-CO/ppm-CO2). In contrast, the ERCO related to heavy industry in Shanghai is much higher than Shanghai's city mean and more aligned with the city means of two selected industry-oriented cities in China (approaching 20 ppb-CO/ppm-CO2). Although investigations based on a larger number of satellite overpasses are needed, our unique approach (i.e., without using sector-specific information from emission inventories) provides new insights into assessing combustion efficiency within a city from future satellite missions, such as those that will map column CO2 and CO concentrations simultaneously with high spatiotemporal resolutions.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3