Regionalization of patterns of flow intermittence from gauging station records

Author:

Snelder T. H.,Datry T.,Lamouroux N.,Larned S. T.,Sauquet E.ORCID,Pella H.,Catalogne C.

Abstract

Abstract. Understanding large-scale patterns in flow intermittence is important for effective river management. The duration and frequency of zero-flow periods are associated with the ecological characteristics of rivers and have important implications for water resources management. We used daily flow records from 628 gauging stations on rivers with minimally modified flows distributed throughout France to predict regional patterns of flow intermittence. For each station we calculated two annual times series describing flow intermittence; the frequency of zero-flow periods (consecutive days of zero flow) in each year of record (FREQ; yr−1), and the total number of zero-flow days in each year of record (DUR; days). These time series were used to calculate two indices for each station, the mean annual frequency of zero-flow periods (mFREQ; yr−1), and the mean duration of zero-flow periods (mDUR; days). Approximately 20% of stations had recorded at least one zero-flow period in their record. Dissimilarities between pairs of gauges calculated from the annual times series (FREQ and DUR) and geographic distances were weakly correlated, indicating that there was little spatial synchronization of zero flow. A flow-regime classification for the gauging stations discriminated intermittent and perennial stations, and an intermittence classification grouped intermittent stations into three classes based on the values of mFREQ and mDUR. We used random forest (RF) models to relate the flow-regime and intermittence classifications to several environmental characteristics of the gauging station catchments. The RF model of the flow-regime classification had a cross-validated Cohen's kappa of 0.47, indicating fair performance and the intermittence classification had poor performance (cross-validated Cohen's kappa of 0.35). Both classification models identified significant environment-intermittence associations, in particular with regional-scale climate patterns and also catchment area, shape and slope. However, we suggest that the fair-to-poor performance of the classification models is because intermittence is also controlled by processes operating at scales smaller than catchments, such as groundwater-table fluctuations and seepage through permeable channels. We suggest that high spatial heterogeneity in these small-scale processes partly explains the low spatial synchronization of zero flows. While 20% of gauges were classified as intermittent, the flow-regime model predicted 39% of all river segments to be intermittent, indicating that the gauging station network under-represents intermittent river segments in France. Predictions of regional patterns in flow intermittence provide useful information for applications including environmental flow setting, estimating assimilative capacity for contaminants, designing bio-monitoring programs and making preliminary predictions of the effects of climate change on flow intermittence.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference72 articles.

1. Acuña, V., Muñoz, I., Giorgi, A., Omella, M., Sabater, F., and Sabater, S.: Drought and postdrought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects, J. N. Am. Benthol. Soc., 24, 919–933, 2005.

2. Angel, R., Asaf, L., Ronen, Z., and Nejidat, A.: Nitrogen transformations and diversity of ammonia-oxidizing bacteria in a desert ephemeral stream receiving untreated wastewater, Microbiol. Ecol., 59, 46–58, 2010.

3. Arscott, D. B., Larned, S., Scarsbrook, M. R., and Lambert, P.: Aquatic invertebrate community structure along an intermittence gradient: Selwyn River, New Zealand, J. Am. Water Resour. As., 29, 530–545, 2010.

4. Benichou, P. and Le Breton, O.: Prise en compte de la topographie pour la cartographie des champs pluviométriques statistiques (Use of topography on mapping of statistical rainfall fields), La Météorologie, 7, 23–34, 1987.

5. Benito, G., Thorndycraft, V.R., Rico, M.T.: Sánchez-Moya, Y., Sopeña, A., Botero, B. A., Machado, M. J., Davis, M., and Pérez-González, A.: Hydrological response of a dryland ephemeral river to southern African climatic variability during the last millennium, Quaternary Res., 75, 471–482, 2011.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3