Streamflow Intermittence in Europe: Estimating High‐Resolution Monthly Time Series by Downscaling of Simulated Runoff and Random Forest Modeling

Author:

Döll Petra12ORCID,Abbasi Mahdi1ORCID,Messager Mathis Loïc34ORCID,Trautmann Tim1,Lehner Bernhard4ORCID,Lamouroux Nicolas3ORCID

Affiliation:

1. Institute of Physical Geography Goethe University Frankfurt Frankfurt/Main Germany

2. Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK‐F) Frankfurt Frankfurt/Main Germany

3. INRAE UR RiverLy Lyon‐Villeurbanne Paris France

4. Department of Geography McGill University Montreal QC Canada

Abstract

AbstractKnowing where and when rivers cease to flow provides an important basis for evaluating riverine biodiversity, biogeochemistry and ecosystem services. We present a novel modeling approach to estimate monthly time series of streamflow intermittence at high spatial resolution at the continental scale. Streamflow intermittence is quantified at more than 1.5 million river reaches in Europe as the number of no‐flow days grouped into five classes (0, 1–5, 6–15, 16–29, 30–31 no‐flow days) for each month from 1981 to 2019. Daily time series of observed streamflow at 3706 gauging stations were used to train and validate a two‐step random forest modeling approach. Important predictors were derived from time series of monthly streamflow at 73 million 15 arc‐sec (∼500 m) grid cells that were computed by downscaling the 0.5 arc‐deg (∼55 km) output of the global hydrological model WaterGAP, which accounts for human water use. Of the observed perennial and non‐perennial station‐months, 97.8% and 86.4%, respectively, were correctly predicted. Interannual variations of the number of non‐perennial months at non‐perennial reaches were satisfactorily simulated, with a median Pearson correlation of 0.5. While the spatial prevalence of non‐perennial reaches is underestimated, the number of non‐perennial months is overestimated in dry regions of Europe where artificial storage abounds. Our model estimates that 3.8% of all European reach‐months and 17.2% of all reaches were non‐perennial during 1981–2019, predominantly with 30–31 no‐flow days. Although estimation uncertainty is high, our study provides, for the first time, information on the continent‐wide dynamics of non‐perennial rivers and streams.

Funder

Natural Sciences and Engineering Research Council of Canada

Agence Nationale de la Recherche

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3