Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study

Author:

Aubert A. H.,Gascuel-Odoux C.,Gruau G.,Akkal N.,Faucheux M.,Fauvel Y.,Grimaldi C.,Hamon Y.,Jaffrézic A.,Lecoz-Boutnik M.,Molénat J.,Petitjean P.,Ruiz L.,Merot P.

Abstract

Abstract. High-frequency, long-term and multisolute measurements are required to assess the impact of human pressures on water quality due to (i) the high temporal and spatial variability of climate and human activity and (ii) the fact that chemical solutes combine short- and long-term dynamics. Such data series are scarce. This study, based on an original and unpublished time series from the Kervidy-Naizin headwater catchment (Brittany, France), aims to determine solute transfer processes and dynamics that characterise this strongly human-impacted catchment. The Kervidy-Naizin catchment is a temperate, intensive agricultural catchment, hydrologically controlled by shallow groundwater. Over 10 yr, five solutes (nitrate, sulphate, chloride, and dissolved organic and inorganic carbon) were monitored daily at the catchment outlet and roughly every four months in the shallow groundwater. The concentrations of all five solutes showed seasonal variations but the patterns of the variations differed from one solute to another. Nitrate and chloride exhibit rather smooth variations. In contrast, sulphate as well as organic and inorganic carbon is dominated by flood flushes. The observed nitrate and chloride patterns are typical of an intensive agricultural catchment hydrologically controlled by shallow groundwater. Nitrate and chloride originating mainly from organic fertilisers accumulated over several years in the shallow groundwater. They are seasonally exported when upland groundwater connects with the stream during the wet season. Conversely, sulphate as well as organic and inorganic carbon patterns are not specific to agricultural catchments. These solutes do not come from fertilisers and do not accumulate in soil or shallow groundwater; instead, they are biogeochemically produced in the catchment. The results allowed development of a generic classification system based on the specific temporal patterns and source locations of each solute. It also considers the stocking period and the dominant process that limits transport to the stream, i.e. the connectivity of the stocking compartment. This mechanistic classification can be applied to any chemical solute to help assess its origin, storage or production location and transfer mechanism in similar catchments.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3