Influence of vegetation‐induced water table seasonality on groundwater chloride concentration dynamics in a riparian fen peatland

Author:

Renaud Adrien12ORCID,Durand Véronique1ORCID,Mügler Claude2ORCID,Marlin Christelle1,Léger Emmanuel1ORCID,Noret Aurélie1,Monvoisin Gaël1

Affiliation:

1. Laboratoire GEOPS Université Paris‐Saclay, CNRS Orsay France

2. Laboratoire des sciences du climat et de l'environnement Université Paris‐Saclay, CNRS, CEA, UVSQ Gif‐sur‐Yvette France

Abstract

AbstractPeatlands are environments that rely mainly on high water levels to accumulate organic matter. Depending on the chemical species observed, the lowering of the water table can change biogeochemical equilibriums, with various impacts. This paper aims to understand the effect of shallow groundwater seasonality on chloride concentrations in a French riparian peatland by combining water table monitoring, geochemical and stable water isotopes analysis. Water table levels and groundwater samples were recorded and collected for 3 years, every 2 months, in nine observation wells and the nearby river. Chloride concentrations were highly variable in space and time, ranging from 10 to 100 mg L−1. They are shown to be related to the water table dynamics, which are closely linked to the life cycle of the local vegetation. These dynamics were characterized by a significant drawdown between June and October due to plant transpiration and a fast recovering period just after its senescence. Results show that the chloride accumulates within the unsaturated zone during the drying phase and is solubilized back into the groundwater during the rewetting phase, increasing its concentration. Moreover, the water table rises in autumn with various dynamics according to the location in the peatland, which induces some special differences in hydraulic gradients. Such gradients allow lateral transfers from zones of fast recovery to zones of slow recovery, where year‐to‐year chloride accumulation was observed. These complex 3D processes preclude the use of chloride to constrain how the peatland hydrogeological system functions. Conversely, the use of stable water isotopes in this work emphasizes the importance of the river's role during the summer as a water supplier to counterbalance vegetation transpiration.

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3