A critical assessment of simple recharge models: application to the UK Chalk

Author:

Ireson A. M.,Butler A. P.ORCID

Abstract

Abstract. Quantification of the timing and magnitude of point-scale groundwater recharge is challenging, but possible at specific sites given sufficient high spatial and temporal resolution field observations, and a suitable physically based model. Such models are generally too computationally intensive and have too many unknown parameters to be practically applicable within distributed, larger-scale hydrological or groundwater models. This motivates the need for simpler recharge models, which are widely used within groundwater models. However, it is important that these models are able to capture adequately the unsaturated zone flow processes. We perform an inter-comparison of recharge simulated by a detailed physically based model and a simple recharge model, with both models applied to a field site in the fractured porous Chalk in the UK. Flow processes are simulated convincingly using a dual permeability, equivalent continuum, vertically heterogeneous, Richards' equation model, applied to a 2-D hillslope transect. A simple conventional recharge model was then calibrated to reproduce the water table response simulated by the physically based model. The performance in reproducing the water table was surprisingly good, given the known discrepancies between the actual processes and the model representation. However, comparisons of recharge fluxes simulated by each model highlighted problems with the process representations in the simple model. Specifically, bypass flow events during the summer were compensating for recharge that should have come from slow, continual drainage of the unsaturated zone. Such a model may still be useful for assessment of groundwater resources on a monthly basis, under non-extreme climatic conditions. However, under extreme wet or dry conditions, or under a changed climate the predictive capacity of such models is likely to be inadequate.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference63 articles.

1. Allen, D. J., Brewerton, L. J., Coleby, L. M., Gibbs, B. R., Lewis, M. A., MacDonald, A. M., Wagstaff, S. J., and Williams, A. T.: The physical properties of major aquifers in England and Wales, British Geological Survey, Technical report WD/97/34, 1997.

2. Allen, R., Pereira, L., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome 300, 6541, 1998.

3. Bear, J. and Cheng, A. H. D.: Modeling Groundwater Flow and Contaminant Transport, Springer, 2008.

4. Bradford, R. B., Ragab, R., Crooks, S. M., Bouraoui, F., and Peters, E.: Simplicity versus complexity in modelling groundwater recharge in Chalk catchments, Hydrol. Earth Syst. Sci., 6, 927–937, https://doi.org/10.5194/hess-6-927-2002, 2002.

5. Brouyère, S.: Modelling the migration of contaminants through variably saturated dual-porosity, dual-permeability Chalk, J. Cont. Hydrol., 82, 195–219, 2006.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3