Stable carbon isotope biogeochemistry of lakes along a trophic gradient
-
Published:2014-11-20
Issue:22
Volume:11
Page:6265-6276
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
de Kluijver A.ORCID, Schoon P. L., Downing J. A., Schouten S., Middelburg J. J.ORCID
Abstract
Abstract. The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The δ13C of different PLFAs were used as proxy for phytoplankton producers and bacterial consumers. Lake pCO2 was primarily determined by autochthonous production (phytoplankton biomass), especially in eutrophic lakes, and governed the δ13C of DIC. All organic-carbon pools showed overall higher isotopic variability in eutrophic lakes (n = 11) compared to oligo-mesotrophic lakes (n = 11) because of the high variability in δ13C at the base of the food web (both autochthonous and allochthonous carbon). Phytoplankton δ13C was negatively related to lake pCO2 over all lakes and positively related to phytoplankton biomass in eutrophic lakes, which was also reflected in a large range in photosynthetic isotope fractionation (ϵCO2-phyto, 8–25‰). The carbon isotope ratio of allochthonous carbon in oligo-mesotrophic lakes was rather constant, while it varied in eutrophic lakes because of maize cultivation in the watershed.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference61 articles.
1. Arbuckle, K. E. and Downing, J. A.: The influence of watershed land use on lake N: P in a predominantly agricultural landscape, Limnol. Oceanogr., 46, 970–975, 2001. 2. Bade, D. L., Carpenter, S. R., Cole, J. J., Hanson, P. C., and Hesslein, R. H.: Controls of δ13C-DIC in lakes: Geochemistry, lake metabolism, and morphometry, Limnol. Oceanogr., 49, 1160–72, 2004. 3. Bade, D. L., Pace, M. L., Cole, J. J., and Carpenter, S. R.: Can algal photosynthetic inorganic carbon isotope fractionation be predicted in lakes using existing models?, Aquat. Sci., 68, 142–153, 2006. 4. Bade, D. L., Carpenter, S. R., Cole, J. J., Pace, M. L., Kritzberg, E., Van de Bogert, M. C., Cory, R. M., and McKnight, D. M.: Sources and fates of dissolved organic carbon in lakes as determined by whole-lake carbon isotope additions, Biogeochemistry, 84, 115–129, 2007. 5. Bidigare, R. R., Fluegge, A., Freeman, K. H., Hanson, K. L., Hayes, J. M., Hollander, D., Jasper, J. P., King, L. L., Laws, E. A., Milder, J., Millero, F. J., Pancost, R., Popp, B. N., Steinberg, P. A., and Wakeham, S. G.: Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae, Glob. Biogeochem. Cy., 11, 279–292, 1997.
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|