Impacts of anthropogenic eutrophication on the carbon transfers in lacustrine food webs: A paleolimnological assessment in four mountain lakes

Author:

Essert Valentin1ORCID,Millet Laurent1,Verneaux Valérie1,Belle Simon2,Etienne David3,Masclaux Hélène1

Affiliation:

1. Chrono-environnement UMR6249, CNRS Université Franche-Comté, France

2. Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Sweden

3. Univ. Savoie Mont Blanc, INRAE, CARRTEL, France

Abstract

Over the last decades, the intensification of anthropogenic activities and associated disturbances on lake watersheds have led to major changes in lakes trophic functioning through accelerated eutrophication. In many lakes, these changes are characterized by an unprecedented increase in organic carbon fluxes, potentially leading to a shift in biogeochemical cycles and in the balance between carbon sequestration and greenhouse gas emissions. Understanding the response of the carbon cycle to natural and anthropogenic environmental changes is becoming a crucial challenge in the context of increasing global pressures. In this study, we reconstructed the changes in the trophic functioning of the benthic and pelagic food web, in response to accelerated eutrophication in four lakes over the last millenium. Changes in carbon pathways in food webs were assessed using stable carbon isotope analysis of chitinous subfossil remains of Daphnia, Bosmina, and Chironomini archived in sedimentary records. Changes in the trophic state were inferred from sedimentary geochemical analysis, including carbon accumulation rates, Chl a accumulation rates and carbon-to-nitrogen ratios. Agro-pastoral activities were tracked by analysis of coprophilous ascospores. Results provided by this multi-proxy approach highlight recent disruptions in carbon sources and transfer pathways in lakes food webs. In particular, changes in the carbon isotopic signature of pelagic consumers suggest a recent increase in the use of 13C-depleted carbon sources such as methanogenic or respiration-derived carbon linked to recent changes in trophic state under the intensification of anthropogenic pressures.

Funder

Zone Atelier Arc Jurassien

Conseil Régional de Franche-Comté

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3