Estimation of subsurface soil moisture from surface soil moisture in cold mountainous areas

Author:

Tian Jie,Han Zhibo,Bogena Heye ReemtORCID,Huisman Johan AlexanderORCID,Montzka CarstenORCID,Zhang Baoqing,He Chansheng

Abstract

Abstract. Profile soil moisture (SM) in mountainous areas is important for water resource management and ecohydrological studies of downstream arid watersheds. Satellite products are useful for providing spatially distributed SM information but only have limited penetration depth (e.g., top 5 cm). In contrast, in situ observations can provide measurements at several depths, but only with limited spatial coverage. Spatially continuous estimates of subsurface SM can be obtained from surface observations using multiple methods. This study evaluates methods to calculate subsurface SM from surface SM and its application to satellite SM products, based on a SM observation network in the Qilian Mountains (China) that has operated since 2013. Three different methods were tested to estimate subsurface SM at 10 to 20, 20 to 30, 30 to 50, and 50 to 70 cm, and, in a profile of 0 to 70 cm, from in situ surface SM (0 to 10 cm): the exponential filter (ExpF), the artificial neural network (ANN), and the cumulative distribution function (CDF) matching methods. The ANN method had the lowest estimation errors (RSR), while the ExpF method best captured the temporal variation of subsurface soil moisture; the CDF method is not recommended for the estimation. Meanwhile the ExpF method was able to provide accurate estimates of subsurface soil moisture at 10 to 20 cm and for the profile of 0 to 70 cm using surface (0 to 10 cm) soil moisture only. Furthermore, it was shown that the estimation of profile SM was not significantly worse when an area-generalized optimum characteristic time (Topt) was used instead of station-specific Topt for the Qilian Mountains. The ExpF method was applied to obtain profile SM from the SMAP_L3 surface soil moisture product, and the resulting profile SM was compared with in situ observations. The ExpF method was able to estimate profile SM from SMAP_L3 surface data with reasonable accuracy (median R of 0.65). Also, the combination of the ExpF method and SMAP_L3 surface product can significantly improve the estimation of profile SM in mountainous areas compared to the SMAP_L4 root zone product. The ExpF method is useful and has potential for estimating profile SM from SMAP surface products in the Qilian Mountains.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3