Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling, and a satellite–model fusion approach

Author:

López Valencia Oliver MiguelORCID,Johansen KasperORCID,Aragón Solorio Bruno José LuisORCID,Li Ting,Houborg RasmusORCID,Malbeteau Yoann,AlMashharawi Samer,Altaf Muhammad Umer,Fallatah Essam Mohammed,Dasari Hari Prasad,Hoteit Ibrahim,McCabe Matthew FrancisORCID

Abstract

Abstract. The agricultural sector in Saudi Arabia has witnessed rapid growth in both production and area under cultivation over the last few decades. This has prompted some concern over the state and future availability of fossil groundwater resources, which have been used to drive this expansion. Large-scale studies using satellite gravimetric data show a declining trend over this region. However, water management agencies require much more detailed information on both the spatial distribution of agricultural fields and their varying levels of water exploitation through time than coarse gravimetric data can provide. Relying on self-reporting from farm operators or sporadic data collection campaigns to obtain needed information are not feasible options, nor do they allow for retrospective assessments. In this work, a water accounting framework that combines satellite data, meteorological output from weather prediction models, and a modified land surface hydrology model was developed to provide information on both irrigated crop water use and groundwater abstraction rates. Results from the local scale, comprising several thousand individual center-pivot fields, were then used to quantify the regional-scale response. To do this, a semi-automated approach for the delineation of center-pivot fields using a multi-temporal statistical analysis of Landsat 8 data was developed. Next, actual crop evaporation rates were estimated using a two-source energy balance (TSEB) model driven by leaf area index, land surface temperature, and albedo, all of which were derived from Landsat 8. The Community Atmosphere Biosphere Land Exchange (CABLE) model was then adapted to use satellite-based vegetation and related surface variables and forced with a 3 km reanalysis dataset from the Weather Research and Forecasting (WRF) model. Groundwater abstraction rates were then inferred by estimating the irrigation supplied to each individual center pivot, which was determined via an optimization approach that considered CABLE-based estimates of evaporation and TSEB-based satellite estimates. The framework was applied over two study regions in Saudi Arabia: a small-scale experimental facility of around 40 center pivots in Al Kharj that was used for an initial evaluation and a much larger agricultural region in Al Jawf province comprising more than 5000 individual fields across an area exceeding 2500 km2. Total groundwater abstraction for the year 2015 in Al Jawf was estimated at approximately 5.5 billion cubic meters, far exceeding any recharge to the groundwater system and further highlighting the need for a comprehensive water management strategy. Overall, this novel data–model fusion approach facilitates the compilation of national-scale groundwater abstractions while also detailing field-scale information that allows both farmers and water management agencies to make informed water accounting decisions across multiple spatial and temporal scales.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3