A Retrospective Analysis of National-Scale Agricultural Development in Saudi Arabia from 1990 to 2021

Author:

Li Ting1ORCID,López Valencia Oliver Miguel1ORCID,Johansen Kasper1ORCID,McCabe Matthew F.1ORCID

Affiliation:

1. Climate and Livability Initiative, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Abstract

Agricultural intensification has resulted in the depletion of groundwater resources in many regions of the world. A prime example is Saudi Arabia, which witnessed dramatic agricultural expansion since the 1970s. To explore the influence of policy interventions aimed to better manage water resources, accurate information on the changes in the number and acreage of center-pivot fields is required. To quantify these metrics, we apply a hybrid machine learning framework, consisting of Density-Based Spatial Clustering of Applications with Noise, Convolutional Neural Networks, and Spectral Clustering, to the annual maximum Normalized Differential Vegetation Index maps obtained from Landsat imagery collected between 1990 to 2021. When evaluated against more than 28,000 manually delineated fields, the approach demonstrated producer’s accuracies ranging from 83.7% to 94.8% and user’s accuracies ranging from 90.2% to 97.9%. The coefficient of determination (R2) between framework-delineated and manually delineated fields was higher than 0.97. Nationally, we found that most fields pre-dated 1990 (covering 8841 km2 in that year) and were primarily located within the central regions covering Hail, Qassim, Riyadh, and Wadi ad-Dawasir. A small decreasing trend in field acreage was observed for the period 1990–2010. However, by 2015, the acreage had increased to approximately 33,000 fields covering 9310 km2. While a maximum extent was achieved in 2016, recent decreases have seen levels return to pre-1990 levels. The gradual decrease between 1990 to 2010 was related to policy initiatives designed to phase-out wheat, while increases between 2010 to 2015 were linked to fodder crop expansion. There is evidence of an agricultural uptick starting in 2021, which is likely in response to global influences such as the COVID-19 pandemic or the conflict in Ukraine. Overall, this work offers the first detailed assessment of long-term agricultural development in Saudi Arabia, and provides important insights related to production metrics such as crop types, crop water consumption, and crop phenology and the overarching impacts of agricultural policy interventions.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference95 articles.

1. Multimodel projections and uncertainties of irrigation water demand under climate change;Wada;Geophys. Res. Lett.,2013

2. Mapping groundwater abstractions from irrigated agriculture: Big data, inverse modeling, and a satellite–model fusion approach;Johansen;Hydrol. Earth Syst. Sci.,2020

3. Widespread and increased drilling of wells into fossil aquifers in the USA;GebreEgziabher;Nat. Commun.,2022

4. Elhadj, E. (2004). Camels don’t fly, deserts don’t bloom: An assessment of Saudi Arabia’s experiment in desert agriculture. Occasional Paper., 49.

5. Ministry of Economy and Planning (2005). Eighth Development Plan 2005–2009.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Insight into the Stability of Major Agro-Food Resources in Saudi Arabia;Food and Nutrition Security in the Kingdom of Saudi Arabia, Vol. 1;2024

2. Groundwater Risk Assessment in the Arabian Basin of Saudi Arabia Through Multiple Dataset;Arabian Journal for Science and Engineering;2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3