Abstract
Abstract. The complementary principle is an important methodology for estimating actual evaporation by using routinely observed meteorological variables. This review summaries its 56-year development, focusing on how related studies have shifted from adopting a symmetric linear complementary relationship (CR) to employing generalized nonlinear functions. The original CR denotes that the actual evaporation (E) and “apparent” potential evaporation (Epa) depart from the potential evaporation (Ep0) complementarily when the land surface dries from a completely wet environment with constant available energy. The CR was then extended to an asymmetric linear relationship, and the linear nature was retained through properly formulating Epa and/or Ep0. Recently, the linear CR was generalized to a sigmoid function and a polynomial function. The sigmoid function does not involve the formulations of Epa and Ep0 but uses the Penman (1948) potential evaporation and its radiation component as inputs, whereas the polynomial function inherits Ep0 and Epa as inputs and requires proper formulations for application. The generalized complementary principle has a more rigorous physical base and offers a great potential in advancing evaporation estimation. Future studies may cover several topics, including the boundary conditions in wet environments, the parameterization and application over different regions of the world, and integration with other approaches for further development.
Funder
National Natural Science Foundation of China
China Institute of Water Resources and Hydropower Research
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference122 articles.
1. Ai, Z., Wang, Q., Yang, Y., Manevski, K., Zhao, X., and Eer, D.: Estimation of land-surface evaporation at four forest sites across Japan with the new nonlinear complementary method, Scient. Rep., 7, 17793, https://doi.org/10.1038/s41598-017-17473-0, 2017.
2. Ali, M. F. and Mawdsley, J. A.: Comparison of two recent models for estimating actual evapotranspiration using only recorded data, J. Hydrol., 93, 257–276, 1987.
3. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO irrigation and drainage paper No. 56, FAO irrigation and drainage paper No. 56, Food and Agricultural Organization of the UN, Rome, Italy, 1998.
4. Aminzadeh, M., Roderick, M. L., and Or, D.: A generalized complementary relationship between actual and potential evaporation defined by a reference surface temperature, Water Resour. Res., 52, 385–406, https://doi.org/10.1002/2015wr017969, 2016.
5. Anayah, F. M. and Kaluarachchi, J. J.: Improving the complementary methods to estimate evapotranspiration under diverse climatic and physical conditions, Hydrol. Earth Syst. Sci., 18, 2049–2064, https://doi.org/10.5194/hess-18-2049-2014, 2014.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献