Comparative evaluation of four actual evapotranspiration models over different ecosystems and climate zones in China

Author:

Yuan Mengjia12,Gan Guojing3,Bu Jingyi4,Su Yanxin12,Ma Hongyu12,Liu Xianghe12,Gao Yanchun1

Affiliation:

1. a Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. b University of the Chinese Academy of Sciences, Beijing 100049, China

3. c Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

4. d Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA

Abstract

ABSTRACT To better understand the discrepancies in evapotranspiration (ET) simulations between ET models, we intercompared four models in China: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Penman–Montieth–Leuning Version 2 (PML-V2), Sigmoid Generalized Complementary Function (SGCF), Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC). Data from 18 flux sites were used to evaluate the model performance at daytime (when incident shortwave radiation is greater than 20 W/m2) scales. To compare more fairly, we took the intersection of the outputs from four models for the analyses in the main text. All models yielded acceptable results, with PML-V2 or SGCF performing best at most sites. The average coefficient of determination and root mean square error among all sites of LE (latent heat of ET) were 0.72 and 51.71 W/m2 for PT-JPL, 0.80 and 46.65 W/m2 for PML-V2, 0.79 and 41.13 W/m2 for SGCF, 0.70 and 51.09 W/m2 for METRIC. PT-JPL and PML-V2 underestimated ET at most sites, whereas SGCF overestimated, potentially due to uncertainties in the vegetation indices and ET constraint parameters. Compared to measurements, PT-JPL underestimated the proportion of transpiration to evapotranspiration (0.81 versus 0.59), while PML-V2 overestimated (0.81 versus 0.90). Furthermore, all models performed best in the semi-arid zone dominated by grassland sites.

Funder

Key Project of the National Natural Science Foundation of China

General Program of the National Science Foundation of China

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3