Carbon source/sink information provided by column CO<sub>2</sub> measurements from the Orbiting Carbon Observatory

Author:

Baker D. F.,Bösch H.,Doney S. C.,O'Brien D.,Schimel D. S.

Abstract

Abstract. We quantify how well column-integrated CO2 measurements from the Orbiting Carbon Observatory (OCO) should be able to constrain surface CO2 fluxes, given the presence of various error sources. We use variational data assimilation to optimize weekly fluxes at a 2°×5° resolution (lat/lon) using simulated data averaged across each model grid box overflight (typically every ~33 s). Grid-scale simulations of this sort have been carried out before for OCO using simplified assumptions for the measurement error. Here, we more accurately describe the OCO measurements in two ways. First, we use new estimates of the single-sounding retrieval uncertainty and averaging kernel, both computed as a function of surface type, solar zenith angle, aerosol optical depth, and pointing mode (nadir vs. glint). Second, we collapse the information content of all valid retrievals from each grid box crossing into an equivalent multi-sounding measurement uncertainty, factoring in both time/space error correlations and data rejection due to clouds and thick aerosols. Finally, we examine the impact of three types of systematic errors: measurement biases due to aerosols, transport errors, and mistuning errors caused by assuming incorrect statistics. When only random measurement errors are considered, both nadir- and glint-mode data give error reductions over the land of ~45% for the weekly fluxes, and ~65% for seasonal fluxes. Systematic errors reduce both the magnitude and spatial extent of these improvements by about a factor of two, however. Improvements nearly as large are achieved over the ocean using glint-mode data, but are degraded even more by the systematic errors. Our ability to identify and remove systematic errors in both the column retrievals and atmospheric assimilations will thus be critical for maximizing the usefulness of the OCO data.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3