Characteristics and formation mechanism of continuous hazes in China: a case study during the autumn of 2014 in the North China Plain
-
Published:2015-07-23
Issue:14
Volume:15
Page:8165-8178
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Yang Y. R., Liu X. G., Qu Y., An J. L.ORCID, Jiang R., Zhang Y. H., Sun Y. L.ORCID, Wu Z. J., Zhang F.ORCID, Xu W. Q., Ma Q. X.
Abstract
Abstract. Four extreme haze episodes occurred in October 2014 in the North China Plain (NCP). To clarify the formation mechanism of hazes in autumn, strengthened observations were conducted in Beijing from 5 October to 2 November. The meteorological parameters, satellite data, chemical compositions and optical properties of aerosols were obtained. The hazes originated from the NCP, developing in the southwest and northeast directions, with the highest concentration of PM2.5 of 469 μg m−3 in Beijing. The NCP was dominated by a weak high pressure system during the haze episode, which resulted in low surface wind speed and relatively stagnant weather. Moreover, the wind slowed down around Beijing city. The secondary aerosols NO3− was always higher than that of SO42−, which indicated the motor vehicles played a more important part in the hazes in October 2014, even though the oxidation rate from SO2 to SO42− was faster than that of NOx to NO3−. Sudden increases of the concentrations of organic matter, Cl− and BC (black carbon) before each haze episode implied that regional transport of pollutants by biomass burning was important for haze formation during autumn. A satellite map of fire points and the backward trajectories of the air masses also indicated this pollution source. The distinct decrease in the PBL (planetary boundary layer) height during four haze episodes restrained the vertical dispersion of the air pollutants. Water vapor also played a vital role in the formation of hazes by accelerating the chemical transformation of secondary pollutants, leading to hygroscopic growth of aerosols and altering the thermal balance of the atmosphere.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference42 articles.
1. Araujo, J. A., Barajas, B., Kleinman, M., Wang, X., Bennett, B. J., Gong, K. W., Navab, M., Harkema, J., Sioutas, C., Lusis, A. J., and Nel, A. E.: Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress, Circ. Res., 102, 589–596, 2008. 2. Cahill, T. A.: Climate forcing by anthropogenic aerosols: the role for PIXE, Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater., B 109, 402–406, 1996. 3. Cheng, Y., He, K. B., Du, Z. Y., Zheng, M., Duan, F. K., and Ma, Y. L.: Humidity plays an important role in the PM2.5 pollution in Beijing, Environ. Pollut., 197, 68–95, 2015. 4. Dong, X. L., Liu, D. M., Gao, S. P.: Seasonal variations of atmospheric heterocyclic aromatic amines in Beijing, China, Atmos. Res., 120–121, 287–297, 2013. 5. Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., and Streets, D. G.: Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China, Atmos. Environ., 42, 2023–2036, 2008.
Cited by
198 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|